Seurat | 不同单细胞转录组的整合方法

2024-06-02 23:08

本文主要是介绍Seurat | 不同单细胞转录组的整合方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、涉及的新概念

mark

参考(reference):将跨个体,跨技术,跨模式产生的不同的单细胞数据整合后的数据集 。也就是将不同来源的数据集组合到同一空间(reference)中。 从广义上讲,在概念上类似于基因组DNA序列的参考装配。

查询(query):单个实验产生的数据集

转化学习(transfer learning):产生一个于参考数据集(reference)上进行训练的模型,可以将信息再重新投影到query datase上

锚定:由一组共同的分子特征定义的两个细胞(每个数据集一个),将对应关系表示锚定。将得到的一对细胞为锚点,它们编码的跨数据集的细胞关系,将构成所有后续整合分析的基础。

二、标准流程
安装数据集
library(Seurat)
library(SeuratData)
InstallData("panc8")

这里如果长时间下载不了,尝试以下的方法:

  • 可以在Rstudio的控制台看到下载链接,将它复制到本地下载:https://seurat.nygenome.org/src/contrib/panc8.SeuratData_3.0.2.tar.gz

    mark

  • 待下载完成,解压,将标注文件复制出来

    mark

  • 复制到R环境的库目录,比如我的是:E:\R\R-3.6.1\library\SeuratData\data

数据预处理
rm(list = ls())
options(stringsAsFactors = F)
library(Seurat)
library(SeuratData)
data("panc8")
pancreas.list <- SplitObject(panc8, split.by = "tech")
pancreas.list <- pancreas.list[c("celseq", "celseq2", "fluidigmc1", "smartseq2")]# 先对数据集进行归一化,并为每个识别位点确定可变特征。
# 特征选择方法使用variance stabilizing transformation ("vst")
for (i in 1:length(pancreas.list)) {pancreas.list[[i]] <- NormalizeData(pancreas.list[[i]], verbose = FALSE)pancreas.list[[i]] <- FindVariableFeatures(pancreas.list[[i]], selection.method = "vst", nfeatures = 2000, verbose = FALSE)
}
整合数据集
# 整合3种测序方法的胰岛细胞数据集
reference.list <- pancreas.list[c("celseq", "celseq2", "smartseq2")]
# 识别锚点
# 这里选的维度是30,作者建议可以在10-50间调试
pancreas.anchors <- FindIntegrationAnchors(object.list = reference.list, dims = 1:30)
# 进行数据集整合
# 已经整合后的表达矩阵存储在Assay中,未处理的表达举证在RNA对象中
pancreas.integrated <- IntegrateData(anchorset = pancreas.anchors, dims = 1:30)
可视化
library(ggplot2)
library(cowplot)
DefaultAssay(pancreas.integrated) <- "integrated"
pancreas.integrated <- ScaleData(pancreas.integrated, verbose = FALSE)
pancreas.integrated <- RunPCA(pancreas.integrated, npcs = 30, verbose = FALSE)
pancreas.integrated <- RunUMAP(pancreas.integrated, reduction = "pca", dims = 1:30)
p1 <- DimPlot(pancreas.integrated, reduction = "umap", group.by = "tech")
p2 <- DimPlot(pancreas.integrated, reduction = "umap", group.by = "celltype", label = TRUE, repel = TRUE) + NoLegend()
plot_grid(p1, p2)

mark

使用装配参考数据集进行细胞类型分类

mark

三、SCTransform 流程
rm(list = ls())
options(stringsAsFactors = F)
library(Seurat)
library(ggplot2)
options(future.globals.maxSize = 4000 * 1024^2)
data("panc8")
数据预处理
pancreas.list <- SplitObject(panc8, split.by = "tech")
pancreas.list <- pancreas.list[c("celseq", "celseq2", "fluidigmc1", "smartseq2")]# 对每个项目运行SCTransform
for (i in 1:length(pancreas.list)) {pancreas.list[[i]] <- SCTransform(pancreas.list[[i]], verbose = FALSE)
}# 接下来,为下游分析选择特征,运行 PrepSCTIntegration, 确保已计算出所有必要的Pearson
pancreas.features <- SelectIntegrationFeatures(object.list = pancreas.list, nfeatures = 3000)
pancreas.list <- PrepSCTIntegration(object.list = pancreas.list, anchor.features = pancreas.features, verbose = FALSE)
整合数据集
# 这里选择归一化方法为“SCT”,其他命令与标准化流程一样
pancreas.anchors <- FindIntegrationAnchors(object.list = pancreas.list, normalization.method = "SCT", anchor.features = pancreas.features, verbose = FALSE)
pancreas.integrated <- IntegrateData(anchorset = pancreas.anchors, normalization.method = "SCT", verbose = FALSE)
细胞分群
pancreas.integrated <- RunPCA(pancreas.integrated, verbose = FALSE)
pancreas.integrated <- RunUMAP(pancreas.integrated, dims = 1:30)
plots <- DimPlot(pancreas.integrated, group.by = c("tech", "celltype"), combine = FALSE)
plots <- lapply(X = plots, FUN = function(x) x + theme(legend.position = "top") + guides(color = guide_legend(nrow = 3, byrow = TRUE, override.aes = list(size = 3))))
CombinePlots(plots)

mark

四、使用另一个数据集来验证该流程
安装数据集
InstallData("pbmcsca")
数据预处理
data("pbmcsca")
pbmc.list <- SplitObject(pbmcsca, split.by = "Method")
for (i in names(pbmc.list)) {pbmc.list[[i]] <- SCTransform(pbmc.list[[i]], verbose = FALSE)
}
pbmc.features <- SelectIntegrationFeatures(object.list = pbmc.list, nfeatures = 3000)
pbmc.list <- PrepSCTIntegration(object.list = pbmc.list, anchor.features = pbmc.features)
pbmc.anchors <- FindIntegrationAnchors(object.list = pbmc.list, normalization.method = "SCT", anchor.features = pbmc.features)
pbmc.integrated <- IntegrateData(anchorset = pbmc.anchors, normalization.method = "SCT")pbmc.integrated <- RunPCA(object = pbmc.integrated, verbose = FALSE)
pbmc.integrated <- RunUMAP(object = pbmc.integrated, dims = 1:30)
plots <- DimPlot(pbmc.integrated, group.by = c("Method", "CellType"), combine = FALSE)
plots <- lapply(X = plots, FUN = function(x) x + theme(legend.position = "top") + guides(color = guide_legend(nrow = 4, byrow = TRUE, override.aes = list(size = 2.5))))
CombinePlots(plots)

mark

这篇关于Seurat | 不同单细胞转录组的整合方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1025346

相关文章

2. c#从不同cs的文件调用函数

1.文件目录如下: 2. Program.cs文件的主函数如下 using System;using System.Collections.Generic;using System.Linq;using System.Threading.Tasks;using System.Windows.Forms;namespace datasAnalysis{internal static

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

浅谈主机加固,六种有效的主机加固方法

在数字化时代,数据的价值不言而喻,但随之而来的安全威胁也日益严峻。从勒索病毒到内部泄露,企业的数据安全面临着前所未有的挑战。为了应对这些挑战,一种全新的主机加固解决方案应运而生。 MCK主机加固解决方案,采用先进的安全容器中间件技术,构建起一套内核级的纵深立体防护体系。这一体系突破了传统安全防护的局限,即使在管理员权限被恶意利用的情况下,也能确保服务器的安全稳定运行。 普适主机加固措施:

webm怎么转换成mp4?这几种方法超多人在用!

webm怎么转换成mp4?WebM作为一种新兴的视频编码格式,近年来逐渐进入大众视野,其背后承载着诸多优势,但同时也伴随着不容忽视的局限性,首要挑战在于其兼容性边界,尽管WebM已广泛适应于众多网站与软件平台,但在特定应用环境或老旧设备上,其兼容难题依旧凸显,为用户体验带来不便,再者,WebM格式的非普适性也体现在编辑流程上,由于它并非行业内的通用标准,编辑过程中可能会遭遇格式不兼容的障碍,导致操

uva 10061 How many zero's and how many digits ?(不同进制阶乘末尾几个0)+poj 1401

题意是求在base进制下的 n!的结果有几位数,末尾有几个0。 想起刚开始的时候做的一道10进制下的n阶乘末尾有几个零,以及之前有做过的一道n阶乘的位数。 当时都是在10进制下的。 10进制下的做法是: 1. n阶位数:直接 lg(n!)就是得数的位数。 2. n阶末尾0的个数:由于2 * 5 将会在得数中以0的形式存在,所以计算2或者计算5,由于因子中出现5必然出现2,所以直接一

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

【北交大信息所AI-Max2】使用方法

BJTU信息所集群AI_MAX2使用方法 使用的前提是预约到相应的算力卡,拥有登录权限的账号密码,一般为导师组共用一个。 有浏览器、ssh工具就可以。 1.新建集群Terminal 浏览器登陆10.126.62.75 (如果是1集群把75改成66) 交互式开发 执行器选Terminal 密码随便设一个(需记住) 工作空间:私有数据、全部文件 加速器选GeForce_RTX_2080_Ti

【VUE】跨域问题的概念,以及解决方法。

目录 1.跨域概念 2.解决方法 2.1 配置网络请求代理 2.2 使用@CrossOrigin 注解 2.3 通过配置文件实现跨域 2.4 添加 CorsWebFilter 来解决跨域问题 1.跨域概念 跨域问题是由于浏览器实施了同源策略,该策略要求请求的域名、协议和端口必须与提供资源的服务相同。如果不相同,则需要服务器显式地允许这种跨域请求。一般在springbo

AI(文生语音)-TTS 技术线路探索学习:从拼接式参数化方法到Tacotron端到端输出

AI(文生语音)-TTS 技术线路探索学习:从拼接式参数化方法到Tacotron端到端输出 在数字化时代,文本到语音(Text-to-Speech, TTS)技术已成为人机交互的关键桥梁,无论是为视障人士提供辅助阅读,还是为智能助手注入声音的灵魂,TTS 技术都扮演着至关重要的角色。从最初的拼接式方法到参数化技术,再到现今的深度学习解决方案,TTS 技术经历了一段长足的进步。这篇文章将带您穿越时