Scaling Synthetic Data Creation with 1,000,000,000 Personas 链接:https://github.com/tencent-ailab/persona-hub/ 文章目录 Scaling Synthetic Data Creation with 1,000,000,000 Personas1. 摘要2. 背景2.1 什么是数据合成2
为了充分利用GPU计算,加快训练速度,通常采取的方法是增大batch size.然而增大batch size的同时,又要保证精度不下降,目前的state of the art 方法是等比例与batch size增加学习率,并采Sqrt Scaling Rule,Linear Scaling Rule,Warmup Schem等策略来更新学来率. 在训练过程中,通过控制学习率,便可以在训练的时候采
Min-max:所有特征具有相同尺度 (scale) 但不能处理outlier z-score:与min-max相反,可以处理outlier, 但不能产生具有相同尺度的特征变换 More opinions (from researchgate): – If you have a PHYSICALLY NECESSARY MAXIMUM (like in the number of voters
学习论文:TextSquare: Scaling up Text-Centric Visual Instruction Tuning(主要是学习构建数据集) 递归学习了:InternLM-XComposer2: Mastering Free-form Text-Image Composition and Comprehension in Vision-Language Large Models(
从Learn CUDA programming 的GitHub网站下载的例子在我的Ubuntu上运行会出现错误 Example Code如下: #include<stdio.h>#include"scrImagePgmPpmPackage.h"//Kernel which calculate the resized image__global__ void createResizedI
题目描述 You’ve got a recipe which specifies a number of ingredients, the amount of each ingredient you will need, and the number of portions it produces. But, the number of portions you need is not the
通过Active Learning(AL)算法,找到最小的需要标注的数据进行训练,来标记未标记的数据。 AL必须满需下边的需求才能作为crowd-sourced database的默认的最优策略: Generality:算法必须能够应用到任意的分类和标记任务。因为crowd-sourced systems应用广泛。Black-box treatment of the classife
论文Scaling Up Crowd-Sourcing to Very Large Datasets A Case for Active Learning对bootstrap做了介绍。 原书(B. Efron and R. J. Tibshirani. An Introduction to the Bootstrap. Chapman & Hall, 1993.)