大语言模型从Scaling Laws到MoE

2024-05-05 08:28
文章标签 语言 模型 scaling moe laws

本文主要是介绍大语言模型从Scaling Laws到MoE,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1、摩尔定律和伸缩法则

摩尔定律(Moore's law)是由英特尔(Intel)创始人之一戈登·摩尔提出的。其内容为:集成电路上可容纳的晶体管数目,约每隔两年便会增加一倍;而经常被引用的“18个月”,则是由英特尔首席执行官大卫·豪斯(David House)提出:预计18个月会将芯片的性能提高一倍(即更多的晶体管使其更快),是一种以倍数增长的观测。[1]

然而,由于受到晶体管的散热问题、内存带宽瓶劲等问题,摩尔定律目前已经走到了物理的极限,限制了我们做出更快的芯片。

另一方面,OpenAI提出了Scaling Laws[2],其中列举了影响模型性能最大的三个因素:计算量数据集大小模型参数量。也就是说,当其他因素不成为瓶颈时,计算量、数据集大小、模型参数量这3个因素中的单个因素指数增加时,loss会线性的下降。同时,DeepMind的研究也得出来和OpenAI类似的结论[3]。

Scaling Laws for Neural Language Models

根据Scaling Laws,模型越大、数据量越大、计算量越大,模型效果也越好。因此,目前很多LLM都是朝着更多参数、更多训练数据的方向进行scaling。然而,随着摩尔定律走到了尽头,LLM也不可能做到无限大。那么计算受到限制的时候,该如何进一步提升模型的性能呢?其中一种方法是MoE。

2、使用MoE进行LLM的scaling

MoE(the mixture of experts model)的思想是训练多个神经网络(也就是多个experts),每个神经网络 (expert) 被指定 (specialize) 应用于数据集的不同部分。对于不同来源的数据,有一个managing neural net来判断应该交给哪一个 expert 进行处理。

2.1 GLaM

2022年,Google发布了MoE的模型GLaM[4]。GLaM是一个 decoder only 模型,支持 in-context learning,一共有1.2T的参数量,其中有97B是激活的。

GLaM: Efficient Scaling of Language Models with Mixture-of-Experts

GLaM在训练和推理时所需的计算量,都远低于GPT3。同时,在zero-shot、one-shot 和 few shot 方面,GLaM的效果都优于GPT3。

2.2 Expert Choice Routing

GLaM 虽然效果不错,但是有负载不均衡问题。也就是说,会有一部分 expert 会经常被激活,而有一些 expert 很少被激活。

2022年,在 NeurIPS上,提出了新的 Expert Choice Routing 方法[5],来解决负载不均衡问题。该方法中,每个expert 会独立选择 top-k 的tokens 作为输入。每个token都可能会被不同的 expert 选择。一些比较重要的tokens会得到更多的计算资源,而不重要的 tokens 得到的计算资源会比较少。

Mixture-of-Experts with Expert Choice Routing

采用 Expert Choice Routing 的模型,相比于GLaM,在收敛速度方面可以提升2倍, 在 step time 上提速20%,并且完美解决了负载不均衡问题。8B/64E 的模型(有9.8B激活的参数),在 SuperGLUE 上效果超过了 T5-11B 的模型。

3、MoE进阶技术

3.1 Brainformers

上述MoE模型,在训练速度很慢,会成为进一步 scaling 的瓶颈。在 ICML 2023上,进一步提出了Brainformers[6]。

Brainformers: Trading Simplicity for Efficiency

为了模型计算更快,需要对矩阵乘法进行分解,从而减少计算量。同时,这些矩阵分解,必须不能损害模型的准确性。上图 (a) 中,是两种分解矩阵乘法的主要方法,分别是从横向分解(low-rank)和纵向分解(multi-expert) 。而在图 (b)中,可以对 low-rank 和 multi-expert 进行组合、堆叠,以实现更有趣且计算效率高的模型架构。

如果在 bottleneck 处,插入一个 mixure 层,模型看起来就非常像 transformers。如果在 bottleneck 处,插入一个 attention layer,模型看起来就非常像一个 multi-expert transformers。

作者对不同的参数,进行了搜索,从而找到了最优的网络模型结果。搜索的空间包括:不同的层类型(attn、moe、ffn)、隐层维度、MoE隐层维度、FFN隐层维度、attention 的 head 数、Gating Fuction、Capacity Factor、Activation Function等。

从搜索空间中,采样一组参数,构建一个 100M/32E 的模型,选择top-K的模型,然后进行scaling,如1B/64E 、8B/64E。

Brainformers: Trading Simplicity for Efficiency

相比于GLaM,可以在收敛速度方面,提速2倍;在 step time 上提速5倍。

3.2 Lifelong Language Pretraining

其他问题:如何进行增量训练,同时避免灾难性遗忘。

方法:引入新的数据分布时,引入新的 experts,同时冻结原有的权重,并且加入一个regularization loss 避免灾难性遗忘[7]。

Lifelong Language Pretraining with Distribution-Specialized Experts

相比于baseline,Lifelong-MoE 的灾难性遗忘被显著抑制,并且比 dense oracle 的效果还要好。

4、问答及彩蛋

  • MoE model 的训练,有2种方案,一种是 train from scratch,一种是 dense to sparse
  • GPT4是一个MoE model,且大概率是一个 train from scratch 的 MoE model
  • 如果 finetune 后的 MoE 效果变差,可能是 finetune 没有训好,需要增加新的 experts
  • Google 从 NVIDIA 买了 26,000 个 H100 (真有钱)
  • H100 针对 transformers 训练做了专门的优化,主要是卡与卡之间的通讯优化,比 A100 提速 10倍左右

参考

  1. 摩尔定律-维基百科 https://zh.wikipedia.org/zh-hans/%E6%91%A9%E5%B0%94%E5%AE%9A%E5%BE%8B
  2. Scaling Laws for Neural Language Models https://arxiv.org/abs/2001.08361
  3. Training Compute-Optimal Large Language Models https://arxiv.org/abs/2203.15556
  4. GLaM: Efficient Scaling of Language Models with Mixture-of-Experts https://arxiv.org/abs/2112.06905
  5. Mixture-of-Experts with Expert Choice Routing https://arxiv.org/abs/2202.09368
  6. Brainformers: Trading Simplicity for Efficiency https://arxiv.org/abs/2306.00008
  7. Lifelong Language Pretraining with Distribution-Specialized Experts https://arxiv.org/abs/2305.12281

这篇关于大语言模型从Scaling Laws到MoE的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/961243

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

科研绘图系列:R语言扩展物种堆积图(Extended Stacked Barplot)

介绍 R语言的扩展物种堆积图是一种数据可视化工具,它不仅展示了物种的堆积结果,还整合了不同样本分组之间的差异性分析结果。这种图形表示方法能够直观地比较不同物种在各个分组中的显著性差异,为研究者提供了一种有效的数据解读方式。 加载R包 knitr::opts_chunk$set(warning = F, message = F)library(tidyverse)library(phyl

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

AI Toolkit + H100 GPU,一小时内微调最新热门文生图模型 FLUX

上个月,FLUX 席卷了互联网,这并非没有原因。他们声称优于 DALLE 3、Ideogram 和 Stable Diffusion 3 等模型,而这一点已被证明是有依据的。随着越来越多的流行图像生成工具(如 Stable Diffusion Web UI Forge 和 ComyUI)开始支持这些模型,FLUX 在 Stable Diffusion 领域的扩展将会持续下去。 自 FLU

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者