多尺度变换(Multidimensional Scaling ,MDS)详解

2024-04-02 12:44

本文主要是介绍多尺度变换(Multidimensional Scaling ,MDS)详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、基本思想

        MDS(Multidimensional Scaling ,MDS多维尺度变换)是一种经典的降维算法,其基本思想是通过保持数据点之间的距离关系,将高维数据映射到低维空间中。

具体来说,MDS算法的基本步骤如下:

1、构建距离矩阵:首先,我们需要计算原始空间中数据点之间的距离。常用的距离度量方法包括欧几里得距离、Minkowski距离等。通过计算每对数据点之间的距离,我们可以构建一个距离矩阵。
2、中心化距离矩阵:为了进一步处理距离矩阵,我们需要对其进行中心化处理,使得数据点相对于原点对称。
3、计算内积矩阵:通过中心化距离矩阵,我们可以计算内积矩阵B。内积矩阵表示数据点之间的内积关系,可以用于进一步分析数据的结构。
4、计算特征值和特征向量:在得到内积矩阵B后,我们需要计算其特征值和特征向量。特征值表示数据的主要变化方向,特征向量表示对应方向上的大小。我们将选取最大的k个特征值及其对应的特征向量,作为降维后的k维空间的基。
5、计算降维后的坐标:将原始数据投影到选定的k维基上,我们可以得到降维后的坐标。

      通过上述介绍,可以知道,MDS可以将原始数据维度下降到任意维度。

二、MDS算法示例

       让我们用一个关于水果口味的例子来说明MDS算法的原理。

      假设有5种水果:苹果(A)、香蕉(B)、橙子(C)、葡萄(D)和菠萝(E)。我们对这些水果进行了甜度(Sweetness)、酸度(Sourness)和多汁程度(Juiciness)的评分。评分数据如下:

A:(6,4,5)
B:(8,1,3)
C:(5,7,6)
D:(7,3,4)
E:(4,6,8)

我们希望通过MDS算法将这些三维评分数据降维到二维空间,以便更直观地分析水果之间的口味关系。

步骤1:计算距离

我们可以使用欧氏距离(也可以用其他距离计算方法)来计算水果之间的距离。计算结果如下:

A-B: 4.69
A-C: 3.74
A-D: 2.45
A-E: 3.32
B-C: 6.56
B-D: 3.32
B-E: 6.56
C-D: 5.29
C-E: 2.45
D-E: 5.29

步骤2:构建距离矩阵

将计算出的距离整合成一个距离矩阵D

    A      B     C     D      E
A   0.00  4.69  3.74  2.45  3.32B   4.69  0.00  6.56  3.32  6.56C   3.74  6.56  0.00  5.29  2.45D   2.45  3.32  5.29  0.00  5.29E   3.32  6.56  2.45  5.29  0.00

步骤3:中心化距离矩阵

我们需要计算中心化矩阵H。数据点的数量n为5。因此,我们可以得到:

I=[1 0 0 0 00 1 0 0 00 0 1 0 00 0 0 1 00 0 0 0 1]
L=[11111]
H=I-(1/5)*L*L^T
=[0.8  -0.2  -0.2  -0.2  -0.2-0.2 0.8   -0.2  -0.2  -0.2-0.2 -0.2  0.8   -0.2  -0.2-0.2 -0.2  -0.2  0.8  -0.2-0.2 -0.2  -0.2  -0.2  0.8]

步骤4:计算内积矩阵

接下来,我们需要计算内积矩阵B。首先,我们需要计算距离矩阵D的平方:

D.^2=[0.00  21.98  13.99  6.00  11.0221.98 0.00   43.03  11.02 43.0313.99 43.03  0.00   28.00 6.006.00  11.02  28.00  0.00  28.0011.02 43.03  6.00   28.00 0.00]

然后,我们用中心化矩阵H和距离矩阵D的平方计算内积矩阵B:

B=-0.5*H*D.^2*H=[2.12  -2.27  -1.07  1.12  0.11-2.27 15.33  -8.99  5.21  -9.29-1.07 -8.99  9.72  -6.07  6.421.12  5.21   -6.07  6.12  -6.370.11  -9.29  6.42   -6.37  9.13]

步骤5:计算特征值和特征向量

我们需要计算内积矩阵B的特征值和特征向量。我们得到了如下特征值和特征向量:

特征值:lamda1=32.32  lamda2=6.39
特征值lamda1对应的特征向量V1=[-0.02 0.63 -0.48 0.36 -0.49]
特征值lamda2对应的特征向量V2=[-0.53 0.59 0.33 -0.50 0.10]

我们选取最大的两个特征值λ1和λ2,以及对应的特征向量v1和v2,作为降维后的二维空间的基。

步骤6:计算降维后坐标

我们将原始数据投影到选定的二维基上,计算新坐标。首先,构建特征向量矩阵V和特征值矩阵Λ的平方根:

V=[-0.02  -0.530.63   0.59-0.48  0.330.36   -0.50-0.49  0.10]
对角矩阵A^0.5=[sqrt(32.32)      00        sqrt(6.39)]

然后,我们计算降维后的坐标:新坐标 = A * A^(1/2)

新坐标=[-0.11   -1.333.60    1.50-2.76   0.842.02   -1.26-2.76   0.25]

最后,我们得到了降维后的二维坐标:

苹果(A):(-0.11, -1.33 )
香蕉(B):(3.60, 1.50)
橙子(C):(-2.76, 0.84 )
葡萄(D):(2.02, -1.26 )
菠萝(E):(0.36, 2.89)

三、基于MATLAB的MDS示例代码

MATLAB中自带降维函数cmdscale,实现代码如下:

clc;
clear;
data=[0.0,4.69,3.74,2.45,3.32;4.69,0.0,6.56,3.32,6.56;3.74,6.56,0.0,5.29,2.45;2.45,3.32,5.29,0.0,5.29;3.32,6.56,2.45,5.29,0.0];
Y=cmdscale(data);

如果将数据降维为2维,则取前2列,结果如下:

如果按照上述原理,编写程序,代码如下:

D=[0.0,4.69,3.74,2.45,3.32;4.69,0.0,6.56,3.32,6.56;3.74,6.56,0.0,5.29,2.45;2.45,3.32,5.29,0.0,5.29;3.32,6.56,2.45,5.29,0.0];I=[1,0,0,0,0;0,1,0,0,0;0,0,1,0,0;0,0,0,1,0;0,0,0,0,1];
L=[1;1;1;1;1];
L*L';
H=I-(0.2)*L*L';
D2=D.^2;
B=-0.5*H*D.^2*H;
[v,d]=eig(B);
lamda1=d(1,1);
lamda2=d(2,2);
duijiaojuzhen=[sqrt(lamda1),0;0,sqrt(lamda2)];
V=[v(:,1),v(:,2)];
zuobiao=V*duijiaojuzhen

四、总结

下面是一个关于MDS算法优缺点的表格:

MDS的优点MDS的缺点
计算相对比较容易而且不需要提供先验知识。当数据量较大时,运算时间可能较长。
在降维过程中尽量保持数据点之间的距离关系,有助于挖掘数据中的结构信息,适用于各种类型的数据,如距离、相似性、关联性等。各个维度的地位相同,无法区分不同维度的重要性。

参考博客:【数据降维-第4篇】多维尺度变换(MDS)快速理解,及MATLAB实现 - 知乎

这篇关于多尺度变换(Multidimensional Scaling ,MDS)详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/870013

相关文章

Linux换行符的使用方法详解

《Linux换行符的使用方法详解》本文介绍了Linux中常用的换行符LF及其在文件中的表示,展示了如何使用sed命令替换换行符,并列举了与换行符处理相关的Linux命令,通过代码讲解的非常详细,需要的... 目录简介检测文件中的换行符使用 cat -A 查看换行符使用 od -c 检查字符换行符格式转换将

详解C#如何提取PDF文档中的图片

《详解C#如何提取PDF文档中的图片》提取图片可以将这些图像资源进行单独保存,方便后续在不同的项目中使用,下面我们就来看看如何使用C#通过代码从PDF文档中提取图片吧... 当 PDF 文件中包含有价值的图片,如艺术画作、设计素材、报告图表等,提取图片可以将这些图像资源进行单独保存,方便后续在不同的项目中使

Android中Dialog的使用详解

《Android中Dialog的使用详解》Dialog(对话框)是Android中常用的UI组件,用于临时显示重要信息或获取用户输入,本文给大家介绍Android中Dialog的使用,感兴趣的朋友一起... 目录android中Dialog的使用详解1. 基本Dialog类型1.1 AlertDialog(

C#数据结构之字符串(string)详解

《C#数据结构之字符串(string)详解》:本文主要介绍C#数据结构之字符串(string),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录转义字符序列字符串的创建字符串的声明null字符串与空字符串重复单字符字符串的构造字符串的属性和常用方法属性常用方法总结摘

Java中StopWatch的使用示例详解

《Java中StopWatch的使用示例详解》stopWatch是org.springframework.util包下的一个工具类,使用它可直观的输出代码执行耗时,以及执行时间百分比,这篇文章主要介绍... 目录stopWatch 是org.springframework.util 包下的一个工具类,使用它

Java进行文件格式校验的方案详解

《Java进行文件格式校验的方案详解》这篇文章主要为大家详细介绍了Java中进行文件格式校验的相关方案,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、背景异常现象原因排查用户的无心之过二、解决方案Magandroidic Number判断主流检测库对比Tika的使用区分zip

Java实现时间与字符串互相转换详解

《Java实现时间与字符串互相转换详解》这篇文章主要为大家详细介绍了Java中实现时间与字符串互相转换的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、日期格式化为字符串(一)使用预定义格式(二)自定义格式二、字符串解析为日期(一)解析ISO格式字符串(二)解析自定义

springboot security快速使用示例详解

《springbootsecurity快速使用示例详解》:本文主要介绍springbootsecurity快速使用示例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝... 目录创www.chinasem.cn建spring boot项目生成脚手架配置依赖接口示例代码项目结构启用s

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

一文详解SpringBoot响应压缩功能的配置与优化

《一文详解SpringBoot响应压缩功能的配置与优化》SpringBoot的响应压缩功能基于智能协商机制,需同时满足很多条件,本文主要为大家详细介绍了SpringBoot响应压缩功能的配置与优化,需... 目录一、核心工作机制1.1 自动协商触发条件1.2 压缩处理流程二、配置方案详解2.1 基础YAML