多尺度变换(Multidimensional Scaling ,MDS)详解

2024-04-02 12:44

本文主要是介绍多尺度变换(Multidimensional Scaling ,MDS)详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、基本思想

        MDS(Multidimensional Scaling ,MDS多维尺度变换)是一种经典的降维算法,其基本思想是通过保持数据点之间的距离关系,将高维数据映射到低维空间中。

具体来说,MDS算法的基本步骤如下:

1、构建距离矩阵:首先,我们需要计算原始空间中数据点之间的距离。常用的距离度量方法包括欧几里得距离、Minkowski距离等。通过计算每对数据点之间的距离,我们可以构建一个距离矩阵。
2、中心化距离矩阵:为了进一步处理距离矩阵,我们需要对其进行中心化处理,使得数据点相对于原点对称。
3、计算内积矩阵:通过中心化距离矩阵,我们可以计算内积矩阵B。内积矩阵表示数据点之间的内积关系,可以用于进一步分析数据的结构。
4、计算特征值和特征向量:在得到内积矩阵B后,我们需要计算其特征值和特征向量。特征值表示数据的主要变化方向,特征向量表示对应方向上的大小。我们将选取最大的k个特征值及其对应的特征向量,作为降维后的k维空间的基。
5、计算降维后的坐标:将原始数据投影到选定的k维基上,我们可以得到降维后的坐标。

      通过上述介绍,可以知道,MDS可以将原始数据维度下降到任意维度。

二、MDS算法示例

       让我们用一个关于水果口味的例子来说明MDS算法的原理。

      假设有5种水果:苹果(A)、香蕉(B)、橙子(C)、葡萄(D)和菠萝(E)。我们对这些水果进行了甜度(Sweetness)、酸度(Sourness)和多汁程度(Juiciness)的评分。评分数据如下:

A:(6,4,5)
B:(8,1,3)
C:(5,7,6)
D:(7,3,4)
E:(4,6,8)

我们希望通过MDS算法将这些三维评分数据降维到二维空间,以便更直观地分析水果之间的口味关系。

步骤1:计算距离

我们可以使用欧氏距离(也可以用其他距离计算方法)来计算水果之间的距离。计算结果如下:

A-B: 4.69
A-C: 3.74
A-D: 2.45
A-E: 3.32
B-C: 6.56
B-D: 3.32
B-E: 6.56
C-D: 5.29
C-E: 2.45
D-E: 5.29

步骤2:构建距离矩阵

将计算出的距离整合成一个距离矩阵D

    A      B     C     D      E
A   0.00  4.69  3.74  2.45  3.32B   4.69  0.00  6.56  3.32  6.56C   3.74  6.56  0.00  5.29  2.45D   2.45  3.32  5.29  0.00  5.29E   3.32  6.56  2.45  5.29  0.00

步骤3:中心化距离矩阵

我们需要计算中心化矩阵H。数据点的数量n为5。因此,我们可以得到:

I=[1 0 0 0 00 1 0 0 00 0 1 0 00 0 0 1 00 0 0 0 1]
L=[11111]
H=I-(1/5)*L*L^T
=[0.8  -0.2  -0.2  -0.2  -0.2-0.2 0.8   -0.2  -0.2  -0.2-0.2 -0.2  0.8   -0.2  -0.2-0.2 -0.2  -0.2  0.8  -0.2-0.2 -0.2  -0.2  -0.2  0.8]

步骤4:计算内积矩阵

接下来,我们需要计算内积矩阵B。首先,我们需要计算距离矩阵D的平方:

D.^2=[0.00  21.98  13.99  6.00  11.0221.98 0.00   43.03  11.02 43.0313.99 43.03  0.00   28.00 6.006.00  11.02  28.00  0.00  28.0011.02 43.03  6.00   28.00 0.00]

然后,我们用中心化矩阵H和距离矩阵D的平方计算内积矩阵B:

B=-0.5*H*D.^2*H=[2.12  -2.27  -1.07  1.12  0.11-2.27 15.33  -8.99  5.21  -9.29-1.07 -8.99  9.72  -6.07  6.421.12  5.21   -6.07  6.12  -6.370.11  -9.29  6.42   -6.37  9.13]

步骤5:计算特征值和特征向量

我们需要计算内积矩阵B的特征值和特征向量。我们得到了如下特征值和特征向量:

特征值:lamda1=32.32  lamda2=6.39
特征值lamda1对应的特征向量V1=[-0.02 0.63 -0.48 0.36 -0.49]
特征值lamda2对应的特征向量V2=[-0.53 0.59 0.33 -0.50 0.10]

我们选取最大的两个特征值λ1和λ2,以及对应的特征向量v1和v2,作为降维后的二维空间的基。

步骤6:计算降维后坐标

我们将原始数据投影到选定的二维基上,计算新坐标。首先,构建特征向量矩阵V和特征值矩阵Λ的平方根:

V=[-0.02  -0.530.63   0.59-0.48  0.330.36   -0.50-0.49  0.10]
对角矩阵A^0.5=[sqrt(32.32)      00        sqrt(6.39)]

然后,我们计算降维后的坐标:新坐标 = A * A^(1/2)

新坐标=[-0.11   -1.333.60    1.50-2.76   0.842.02   -1.26-2.76   0.25]

最后,我们得到了降维后的二维坐标:

苹果(A):(-0.11, -1.33 )
香蕉(B):(3.60, 1.50)
橙子(C):(-2.76, 0.84 )
葡萄(D):(2.02, -1.26 )
菠萝(E):(0.36, 2.89)

三、基于MATLAB的MDS示例代码

MATLAB中自带降维函数cmdscale,实现代码如下:

clc;
clear;
data=[0.0,4.69,3.74,2.45,3.32;4.69,0.0,6.56,3.32,6.56;3.74,6.56,0.0,5.29,2.45;2.45,3.32,5.29,0.0,5.29;3.32,6.56,2.45,5.29,0.0];
Y=cmdscale(data);

如果将数据降维为2维,则取前2列,结果如下:

如果按照上述原理,编写程序,代码如下:

D=[0.0,4.69,3.74,2.45,3.32;4.69,0.0,6.56,3.32,6.56;3.74,6.56,0.0,5.29,2.45;2.45,3.32,5.29,0.0,5.29;3.32,6.56,2.45,5.29,0.0];I=[1,0,0,0,0;0,1,0,0,0;0,0,1,0,0;0,0,0,1,0;0,0,0,0,1];
L=[1;1;1;1;1];
L*L';
H=I-(0.2)*L*L';
D2=D.^2;
B=-0.5*H*D.^2*H;
[v,d]=eig(B);
lamda1=d(1,1);
lamda2=d(2,2);
duijiaojuzhen=[sqrt(lamda1),0;0,sqrt(lamda2)];
V=[v(:,1),v(:,2)];
zuobiao=V*duijiaojuzhen

四、总结

下面是一个关于MDS算法优缺点的表格:

MDS的优点MDS的缺点
计算相对比较容易而且不需要提供先验知识。当数据量较大时,运算时间可能较长。
在降维过程中尽量保持数据点之间的距离关系,有助于挖掘数据中的结构信息,适用于各种类型的数据,如距离、相似性、关联性等。各个维度的地位相同,无法区分不同维度的重要性。

参考博客:【数据降维-第4篇】多维尺度变换(MDS)快速理解,及MATLAB实现 - 知乎

这篇关于多尺度变换(Multidimensional Scaling ,MDS)详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/870013

相关文章

Python ZIP文件操作技巧详解

《PythonZIP文件操作技巧详解》在数据处理和系统开发中,ZIP文件操作是开发者必须掌握的核心技能,Python标准库提供的zipfile模块以简洁的API和跨平台特性,成为处理ZIP文件的首选... 目录一、ZIP文件操作基础三板斧1.1 创建压缩包1.2 解压操作1.3 文件遍历与信息获取二、进阶技

一文详解Java异常处理你都了解哪些知识

《一文详解Java异常处理你都了解哪些知识》:本文主要介绍Java异常处理的相关资料,包括异常的分类、捕获和处理异常的语法、常见的异常类型以及自定义异常的实现,文中通过代码介绍的非常详细,需要的朋... 目录前言一、什么是异常二、异常的分类2.1 受检异常2.2 非受检异常三、异常处理的语法3.1 try-

Java中的@SneakyThrows注解用法详解

《Java中的@SneakyThrows注解用法详解》:本文主要介绍Java中的@SneakyThrows注解用法的相关资料,Lombok的@SneakyThrows注解简化了Java方法中的异常... 目录前言一、@SneakyThrows 简介1.1 什么是 Lombok?二、@SneakyThrows

Java中字符串转时间与时间转字符串的操作详解

《Java中字符串转时间与时间转字符串的操作详解》Java的java.time包提供了强大的日期和时间处理功能,通过DateTimeFormatter可以轻松地在日期时间对象和字符串之间进行转换,下面... 目录一、字符串转时间(一)使用预定义格式(二)自定义格式二、时间转字符串(一)使用预定义格式(二)自

Redis Pipeline(管道) 详解

《RedisPipeline(管道)详解》Pipeline管道是Redis提供的一种批量执行命令的机制,通过将多个命令一次性发送到服务器并统一接收响应,减少网络往返次数(RTT),显著提升执行效率... 目录Redis Pipeline 详解1. Pipeline 的核心概念2. 工作原理与性能提升3. 核

Python正则表达式语法及re模块中的常用函数详解

《Python正则表达式语法及re模块中的常用函数详解》这篇文章主要给大家介绍了关于Python正则表达式语法及re模块中常用函数的相关资料,正则表达式是一种强大的字符串处理工具,可以用于匹配、切分、... 目录概念、作用和步骤语法re模块中的常用函数总结 概念、作用和步骤概念: 本身也是一个字符串,其中

Nginx location匹配模式与规则详解

《Nginxlocation匹配模式与规则详解》:本文主要介绍Nginxlocation匹配模式与规则,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、环境二、匹配模式1. 精准模式2. 前缀模式(不继续匹配正则)3. 前缀模式(继续匹配正则)4. 正则模式(大

Android实现在线预览office文档的示例详解

《Android实现在线预览office文档的示例详解》在移动端展示在线Office文档(如Word、Excel、PPT)是一项常见需求,这篇文章为大家重点介绍了两种方案的实现方法,希望对大家有一定的... 目录一、项目概述二、相关技术知识三、实现思路3.1 方案一:WebView + Office Onl

Java实现优雅日期处理的方案详解

《Java实现优雅日期处理的方案详解》在我们的日常工作中,需要经常处理各种格式,各种类似的的日期或者时间,下面我们就来看看如何使用java处理这样的日期问题吧,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言一、日期的坑1.1 日期格式化陷阱1.2 时区转换二、优雅方案的进阶之路2.1 线程安全重构2

Java中的JSONObject详解

《Java中的JSONObject详解》:本文主要介绍Java中的JSONObject详解,需要的朋友可以参考下... Java中的jsONObject详解一、引言在Java开发中,处理JSON数据是一种常见的需求。JSONObject是处理JSON对象的一个非常有用的类,它提供了一系列的API来操作J