反着用scaling law验证数据:群聊场景指代消歧

2024-05-10 22:28

本文主要是介绍反着用scaling law验证数据:群聊场景指代消歧,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文作者:白牛

我们之前开源了 LLM 群聊助手茴香豆(以下简称豆哥),它的特点是:

  • 设计了一套拒答 pipeline,实用于群聊场景。能够有效抵抗各种文本攻击、过滤无关话题,累计面对 openmmlab 数千用户运行半年( 17 个群、7w 条群消息)。这个过程确认了 text2vec 模型更适合反着用
  • 工业级开源。除算法 pipeline 外,还实现对应的 android、web service, License 支持商用
  • 成本低。配合 LLM API 只需要 1.5G 显存

此外我们还工程优化了 ReRoPE,llama2 13B 在 A100 单卡上不训练,就可以从 8k 外推到 40k token。

上海AI Lab推出“茴香豆”:群聊场景中的领域知识助手

然而在群聊中,豆哥往往会遇到类似对话:

张三:mmpose 支持移动端部署么?
李四:搭车问一下,怎么把它部署到 TX2 ?
王二:你们说的是哪家的算法框架?

显然 “” 应该替换成 "mmpose",然而豆哥处理李四的问题时,不能直接输入所有人的对话,否则会影响 pipeline 精度;受成本约束,也不能每一句都消,所以整件事第一步是,判断应不应该消歧


项目链接:

https://github.com/internlm/huixiangdou

(文末点击阅读原文可直达,欢迎点亮小星星)


为了解决上述问题,我们使用的方法是手工标注 + SFT 优化 LLM,也就是 NLPer 常见地,用 LLM 优化下游 NLP 任务。

最终结果如上图,“0.5B 媲美 14B”。

绿色的是训练前的 precision 曲线,证明反反复复标一周没白干,确实能靠 scaling law 明确问题和训数据;

蓝色的是训练后的 F1 score 曲线。

  • 14B 的 recall 是最高的、能达到 92.11
  • 32B 的 F1 score 最高,到了85.58
  • 额外地,MoE-2.7B 涨了 +29.07,详见见 arXiv 里的表格
本文贡献是:
1.如何证明标注本身没有 bias ? 我们使用 scaling law 定义问题、确认标注可靠。
scaling law 是说数据内容不变,精度随参数量和训练数据量线性增大。
反过来想,取一组相同架构的 LLM(qwen 0.5~32B)不变,prompt 和数据标注变化。如果数据的精度表现,随模型体积而改善,那是不是证明了数据标得好 ?
当然这个 “标得好” 更多的是和 qwen 更契合,更容易 finetune、更适合 GPU-poor。


2.数据来自微信群聊——卷卷群(ncnn contributors group),我们开源了 2.3k 手工标注数据和对应的 LoRA weights,授权见末尾。


3.所有实验均可复现,trick 已在论文中注明。

1.数据准备

数据来源。选 ncnn 卷卷群是因为:

  • 群友背景复杂,当老板的打工的读书的都有、软件硬件女装啥都会。 AKA 数据范化性强。
  • ncnn 不是某个 team 维护的,大小事情是靠爱发电,导致平均群活跃高达 87 条/人月。

预处理。原始输入取了 58,000 条,直接标注能标死我。所以做了 concat 和 filter 两步预处理:一来是用户确实发 2 句话才讲 1 个事; 二来大部分内容也不是问题,豆哥并不关心陈述句。预处理后得到 2,302 句问题。

标注过程是个循环,不是手工标一次搞定的。

  • STEP1. 按指代消歧的定义构造 prompt,想清了问题再手动标
  • STEP2. 标好了用 7 个 vanilla LLM 跑精度
  • STEP3. 如果 precision 不随参数量增长,检查 prompt 和问题定义,看哪里没明确。重复 STEP1

如此重复 5 轮,得到 alpaca.json

2. 训练

参照知乎其他人的 finetune 经验, 2k 数据量上不了 further pretrain,fp16 的 SFT 也未必好。

虽然 LoRA 不靠谱,可听人劝吃饱饭。我们用的 axolotl,顺手发了个 typo PR。

第一轮 LoRA epoch=1,lr=2e-4,rank=64,4B F1 score 掉点 -12,其他模型都在涨。

想象中,4B 的 F1 score 应该在 62.9 到 69.22 之间。

那咋整?继续治疗呗..

我们尝试了 lr=2e-5;不同的 rank;换 LoRA+,也就改 lr 能让损失缩小到 -3。

注意缩小 lr 对其他模型(7B、1.8B、2.7B)都没用,并不是个可靠方法。

果然 LoRA 不靠谱,继续遍历参数已经没有意义。我们也尝试过全量微调,2 个 epoch 后模型会退化为下游 NLP 任务中的分类器,尽管 F1 score 高达 71.38,全量微调后的模型已经失去通用能力。

3. 结论

现在看来 base 模型和数据是可靠的,但训练方法不太行。

  • 检查 weight ,看训练方法为啥不行,即 4B 上 low-rank 前提被满足了多少?
  • 现在有个 recall 92 的模型,只是应用的第一步。我估计后面实用还都是坑 qaq。

附录

论文地址:https://arxiv.org/abs/2405.02817

alpaca 训练数据:https://huggingface.co/datasets/tpoisonooo/HuixiangDou-CR/tree/main

LoRA 14B 权重:https://huggingface.co/tpoisonooo/HuixiangDou-CR-LoRA-Qwen-14B

LoRA 32B 权重:https://huggingface.co/tpoisonooo/HuixiangDou-CR-LoRA-Qwen-32B

WanDb 实验记录:https://wandb.ai/tpoisonooo/huixiangdou-cr

复现步骤:https://github.com/InternLM/HuixiangDou/tree/main/sft

卷卷群隐私授权,我是群主我说了算(逃

这篇关于反着用scaling law验证数据:群聊场景指代消歧的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/977733

相关文章

Python将大量遥感数据的值缩放指定倍数的方法(推荐)

《Python将大量遥感数据的值缩放指定倍数的方法(推荐)》本文介绍基于Python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处理,并将所得处理后数据保存为新的遥感影像... 本文介绍基于python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处

Mysql虚拟列的使用场景

《Mysql虚拟列的使用场景》MySQL虚拟列是一种在查询时动态生成的特殊列,它不占用存储空间,可以提高查询效率和数据处理便利性,本文给大家介绍Mysql虚拟列的相关知识,感兴趣的朋友一起看看吧... 目录1. 介绍mysql虚拟列1.1 定义和作用1.2 虚拟列与普通列的区别2. MySQL虚拟列的类型2

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

Linux使用dd命令来复制和转换数据的操作方法

《Linux使用dd命令来复制和转换数据的操作方法》Linux中的dd命令是一个功能强大的数据复制和转换实用程序,它以较低级别运行,通常用于创建可启动的USB驱动器、克隆磁盘和生成随机数据等任务,本文... 目录简介功能和能力语法常用选项示例用法基础用法创建可启动www.chinasem.cn的 USB 驱动

在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码

《在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码》在MyBatis的XML映射文件中,trim元素用于动态添加SQL语句的一部分,处理前缀、后缀及多余的逗号或连接符,示... 在MyBATis的XML映射文件中,<trim>元素用于动态地添加SQL语句的一部分,例如SET或W

Oracle数据库使用 listagg去重删除重复数据的方法汇总

《Oracle数据库使用listagg去重删除重复数据的方法汇总》文章介绍了在Oracle数据库中使用LISTAGG和XMLAGG函数进行字符串聚合并去重的方法,包括去重聚合、使用XML解析和CLO... 目录案例表第一种:使用wm_concat() + distinct去重聚合第二种:使用listagg,

Python实现将实体类列表数据导出到Excel文件

《Python实现将实体类列表数据导出到Excel文件》在数据处理和报告生成中,将实体类的列表数据导出到Excel文件是一项常见任务,Python提供了多种库来实现这一目标,下面就来跟随小编一起学习一... 目录一、环境准备二、定义实体类三、创建实体类列表四、将实体类列表转换为DataFrame五、导出Da

Python实现数据清洗的18种方法

《Python实现数据清洗的18种方法》本文主要介绍了Python实现数据清洗的18种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录1. 去除字符串两边空格2. 转换数据类型3. 大小写转换4. 移除列表中的重复元素5. 快速统

Python数据处理之导入导出Excel数据方式

《Python数据处理之导入导出Excel数据方式》Python是Excel数据处理的绝佳工具,通过Pandas和Openpyxl等库可以实现数据的导入、导出和自动化处理,从基础的数据读取和清洗到复杂... 目录python导入导出Excel数据开启数据之旅:为什么Python是Excel数据处理的最佳拍档