Scaling Up Crowd-Sourcing to Very Large Datasets: A Case for Active Learning-笔记

2024-02-22 10:18

本文主要是介绍Scaling Up Crowd-Sourcing to Very Large Datasets: A Case for Active Learning-笔记,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  通过Active Learning(AL)算法,找到最小的需要标注的数据进行训练,来标记未标记的数据。

  AL必须满需下边的需求才能作为crowd-sourced database的默认的最优策略:

  1. Generality:算法必须能够应用到任意的分类和标记任务。因为crowd-sourced systems应用广泛。
  2. Black-box treatment of the classifer:意思是,能够自动化,不需要对分类器内部进行调节,因为并不是所有的人都是专家。
  3. Batching:支持批处理。可以一次性处理多个数据。
  4. Parallelism:能够并行执行现代的多核处理器和分布式集群。
  5. Noise management:crowd-provided labels有很大噪声,错误,缺乏专业知识啥的。

  本文是第一个满足上述所有条件的AL算法。本文主要贡献了两个AL算法,MinExpError 和Uncertainty,还有一个噪声管理技术partitioning-basedallocation(PBA)。这里主要介绍两个AL算法。
  MinExpError 和Uncertainty决定哪些items被送入crowd。那么接下来就需要处理crowd-provided labels的内在噪声(PBA,基于整数线性编程),决定使用crowd返回的哪个label。
  本算法的一个主要的新奇之处在于使用了bootstrap理论。主要优点有:1bootstrap可以对很多的评估器产生稳定的估计;2基于bootstrap的估计可以通过将分类器看作黑盒来得到;3bootstrap需要的计算可以独立进行,适合分布式系统。
Activate Learning(AL)
Ranker-AL
Bootstrap

这篇关于Scaling Up Crowd-Sourcing to Very Large Datasets: A Case for Active Learning-笔记的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/734934

相关文章

SQL中的CASE WHEN用法小结

《SQL中的CASEWHEN用法小结》文章详细介绍了SQL中的CASEWHEN函数及其用法,包括简单CASEWHEN和CASEWHEN条件表达式两种形式,并通过多个实际场景展示了如何使用CASEWH... 目录一、简单CASE WHEN函数:二、CASE WHEN条件表达式函数三、常用场景场景1:不同状态展

python之流程控制语句match-case详解

《python之流程控制语句match-case详解》:本文主要介绍python之流程控制语句match-case使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录match-case 语法详解与实战一、基础值匹配(类似 switch-case)二、数据结构解构匹

Java中switch-case结构的使用方法举例详解

《Java中switch-case结构的使用方法举例详解》:本文主要介绍Java中switch-case结构使用的相关资料,switch-case结构是Java中处理多个分支条件的一种有效方式,它... 目录前言一、switch-case结构的基本语法二、使用示例三、注意事项四、总结前言对于Java初学者

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

论文翻译:arxiv-2024 Benchmark Data Contamination of Large Language Models: A Survey

Benchmark Data Contamination of Large Language Models: A Survey https://arxiv.org/abs/2406.04244 大规模语言模型的基准数据污染:一项综述 文章目录 大规模语言模型的基准数据污染:一项综述摘要1 引言 摘要 大规模语言模型(LLMs),如GPT-4、Claude-3和Gemini的快

论文阅读笔记: Segment Anything

文章目录 Segment Anything摘要引言任务模型数据引擎数据集负责任的人工智能 Segment Anything Model图像编码器提示编码器mask解码器解决歧义损失和训练 Segment Anything 论文地址: https://arxiv.org/abs/2304.02643 代码地址:https://github.com/facebookresear

数学建模笔记—— 非线性规划

数学建模笔记—— 非线性规划 非线性规划1. 模型原理1.1 非线性规划的标准型1.2 非线性规划求解的Matlab函数 2. 典型例题3. matlab代码求解3.1 例1 一个简单示例3.2 例2 选址问题1. 第一问 线性规划2. 第二问 非线性规划 非线性规划 非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。2

【C++学习笔记 20】C++中的智能指针

智能指针的功能 在上一篇笔记提到了在栈和堆上创建变量的区别,使用new关键字创建变量时,需要搭配delete关键字销毁变量。而智能指针的作用就是调用new分配内存时,不必自己去调用delete,甚至不用调用new。 智能指针实际上就是对原始指针的包装。 unique_ptr 最简单的智能指针,是一种作用域指针,意思是当指针超出该作用域时,会自动调用delete。它名为unique的原因是这个

查看提交历史 —— Git 学习笔记 11

查看提交历史 查看提交历史 不带任何选项的git log-p选项--stat 选项--pretty=oneline选项--pretty=format选项git log常用选项列表参考资料 在提交了若干更新,又或者克隆了某个项目之后,你也许想回顾下提交历史。 完成这个任务最简单而又有效的 工具是 git log 命令。 接下来的例子会用一个用于演示的 simplegit