pcl专题

PCL点云滤波

激光扫描仪、RGB-D相机等设备获取点云数据时,由于设备精度,电磁波的衍射特性,环境因素,操作者经验等因素,导致获取的点云存在一定程度的噪声。点云中的噪声点对后续操作的影响比较大,因此在进行后续处理操作前,应先去除点云噪声。   PCL中有一个专门的点云滤波模块(滤波函数文档地址),可以将噪声点去除,还可以进行点云压缩等操作,非常灵活实用,例如:双边滤波,统计滤波,条件滤波,随机采样一致性滤波

PCL-直通滤波

本篇内容: 讲解直通滤波的作用通过pcl实现直通滤波 效果: 1 主要原理 点云数据通常包含x、y、z三个维度的数据,用户指定维度、范围后,直通滤波过滤或保留该范围内的所有点云 假设我指定维度’y’,范围(0.0,0.1),运行直通滤波后,则过滤或保留y坐标为(0.0,0.1)范围内的所有点云 2 直通滤波主要流程 初始化直通滤波器: pcl::PassThrough<PointTy

【译】PCL官网教程翻译(22):全局对齐空间分布(GASD)描述符 - Globally Aligned Spatial Distribution (GASD) descriptors

英文原文查看 全局对齐空间分布(GASD)描述符 本文描述了全局对齐的空间分布(GASD)全局描述符,用于有效的目标识别和姿态估计。 GASD基于表示对象实例的整个点云的参考系的估计,该实例用于将其与正则坐标系对齐。然后,根据对齐后的点云的三维点在空间上的分布情况计算其描述符。这种描述符还可以扩展到整个对齐点云的颜色分布。将匹配点云的全局对齐变换用于目标姿态的计算。更多信息请参见GASD。

【译】PCL官网教程翻译(21):旋转投影统计(RoPs)特征 - RoPs (Rotational Projection Statistics) feature

英文原网址查看 旋转投影统计(RoPs)特征 在本教程中,我们将学习如何使用pcl::ROPSEstimation类来提取点特性。在这门课中实现的特征提取方法是由Yulan Guo, Ferdous Sohel, Mohammed Bennamoun, Min Lu and Jianwei Wanalso在他们的文章《旋转投影统计用于三维局部表面描述和目标识别》中提出的。 理论基础 特征提

【译】PCL官网教程翻译(20):惯性矩和偏心距描述符 - Moment of inertia and eccentricity based descriptors

英文原网页查看。 基于惯性矩和偏心距的描述符 在本教程中,我们将学习如何使用pcl::MomentOfInertiaEstimation类来获得基于偏心量和惯性矩的描述符。这个类还允许提取轴对齐和有向的点云包围框。但是请记住,提取的OBB可能并不是最小的边界框。 理论基础 特征提取方法的思想如下。首先计算点云的协方差矩阵,提取点云的特征值和特征向量。可以考虑得到的特征向量是归一化的,并且总

【译】PCL官网教程翻译(19):从深度图像中提取NARF特征 - How to extract NARF Features from a range image

英文原文阅读 从深度图像中提取NARF特征 本教程演示如何从深度图像中提取位于NARF关键点位置的NARF描述符。可执行文件使我们能够从磁盘加载点云(如果没有提供,也可以创建点云),从中提取感兴趣的点,然后在这些位置计算描述符。然后,它在图像和3D查看器中可视化这些位置。 代码 首先,在您喜欢的编辑器中创建一个名为narf_feature_extract .cpp的文件,并在其中放置以下代

【译】PCL官网教程翻译(18):估计一组点的视点特征直方图(VFH)签名 - Estimating VFH signatures for a set of points

英文原文查看 估计一组点的视点特征直方图(VFH)签名 本文描述了视点特征直方图([VFH])描述符,这是一种针对聚类(如对象)识别和6DOF姿态估计问题的点簇表示方法。 下图展示了一个VFH识别和姿态估计的例子。给定一组火车数据(除最左边的点云外,最上面一行、最下面一行),学习一个模型,然后使用一个云(最左边的部分)查询/测试模型。匹配的结果按从最好到最差的顺序从左到右从左下角开始。有关更多

【译】PCL官网教程翻译(17):快速点特征直方图(FPFH)描述符 -Fast Point Feature Histograms (FPFH) descriptors

英文原文阅读 快速点特征直方图(FPFH)描述符 计算复杂度直方图(见点特征直方图(PFH)描述符)对于一个给定的有 n n n个点的点云 P P P为 O ( n k 2 ) O (nk ^ 2) O(nk2), k k k是每个点P的最邻近点个数。对于要求实时或接近实时的应用程序,密集点的特征直方图的计算效率是一个一个主要问题。 本教程描述了PFH公式的简化,称为快速点特征直方图(FPF

【译】PCL官网教程翻译(16):点特征直方图(PFH)描述符 -Point Feature Histograms (PFH) descriptors

英文原网页查看。 点特征直方图(PFH)描述符 就点特征表示而言,表面法线和曲率估计是在表示特定点周围的基本的几何形状方面。虽然计算速度极快,也很容易,但是它们不能捕捉太多的细节,因为它们只能用很少的值来近似一个点的k邻域的几何形状。直接的结果是,大多数场景将包含许多具有相同或非常相似的特征值的点,从而减少了它们的信息特征。 本教程介绍了一组为简单起见而创建的3D特征描述符PFH(点特征直方图

Ubuntu中PCL、Eigen、ROS、Ceres、VScode相关操作,安装,卸载,文件存储位置基础合集

Ubuntu中PCL相关操作 查看PCL对应的版本号 apt-cache show libpcl-dev 卸载PCL相关命令 sudo apt-get remove libpcl-dev 如果想要完全卸载相关软件包及其配置文件,需要加上--purge参数: sudo apt-get --purge remove libpcl-dev Ubuntu中eigen相关操作 ubunt

PCL 基于贪心三角化的点云网格化重建

目录 一、概述1.1 定义1.2 实现过程1.3 核心函数 二、代码示例三、结果示例 一、概述 1.1 定义 🙋 贪心三角化:是一种对原始点云进行快速三角化的算法,该算法假设曲面光滑,点云密度变化均匀,不能在三角化的同时对曲面进行平滑和孔洞修复。 1.2 实现过程 (1)先将点云通过法线投影到某一二维坐标平面内 (2)然后对投影得到的点云做平面内的三角化,从而得到各

PCL 基于八叉树获取体素邻居

文章目录 一、简介二、实现代码三、实现效果参考资料 一、简介 基于一个指定的体素,通过八叉树获取该体素周围的体素点云。 二、实现代码 //标准文件#include <iostream>#include <thread>//PCL#include <pcl/common/common.h>#include

PCL滤波介绍(3)

(1)从一个点云中提取索引              如何使用一个,基于某一分割算法提取点云中的一个子集。 代码解析 #include <iostream>#include <pcl/ModelCoefficients.h>#include <pcl/io/pcd_io.h>#include <pcl/point_types.h>#include <pcl/sample_con

PCL滤波介绍(2)

(1)使用statisticalOutlierRemoval滤波器移除离群点   使用统计分析技术,从一个点云数据中集中移除测量噪声点(也就是离群点)比如:激光扫描通常会产生密度不均匀的点云数据集,另外测量中的误差也会产生稀疏的离群点,使效果不好,估计局部点云特征(例如采样点处法向量或曲率变化率)的运算复杂,这会导致错误的数值,反过来就会导致点云配准等后期的处理失败。 解决办法:每个点的邻

PCL滤波介绍(1)

在获取点云数据时 ,由于设备精度,操作者经验环境因素带来的影响,以及电磁波的衍射特性,被测物体表面性质变化和数据拼接配准操作过程的影响,点云数据中讲不可避免的出现一些噪声。在点云处理流程中滤波处理作为预处理的第一步,对后续的影响比较大,只有在滤波预处理中将噪声点 ,离群点,孔洞,数据压缩等按照后续处理定制,才能够更好的进行配准,特征提取,曲面重建,可视化等后续应用处理,PCL中点云滤波模块提供了很

PCL 可视化

可视化(visualization)是利用计算机图形学和图像处理技术,将数据转换图像在屏幕上显示出来,并进行交互处理的的理论,方法和技术, pcl_visualization库建立了能够快速建立原型的目的和可视化算法对三维点云数据操作的结果。类似于opencv的highgui例程显示二维图像,在屏幕上绘制基本的二维图形,库提供了以下几点: (1)渲染和设置视觉特性的方法(如颜色、大小、透明

PCL学习八叉树

建立空间索引在点云数据处理中有着广泛的应用,常见的空间索引一般 是自顶而下逐级划分空间的各种空间索引结构,比较有代表性的包括BSP树,KD树,KDB树,R树,四叉树,八叉树等索引结构,而这些结构中,KD树和八叉树使用比较广泛 八叉树(Octree)是一种用于描述三维空间的树状数据结构。八叉树的每个节点表示一个正方体的体积元素,每个节点有八个子节点,这八个子节点所表示的体积元素加在一起就等于父

kd-tree理论以及在PCL 中的代码的实现

(小技巧记录:博客园编辑的网页界面变小了使用Ctrl  ++来变大网页字体) 通过雷达,激光扫描,立体摄像机等三维测量设备获取的点云数据,具有数据量大,分布不均匀等特点,作为三维领域中一个重要的数据来源,点云主要是表征目标表面的海量点的集合,并不具备传统网格数据的几何拓扑信息,所以点云数据处理中最为核心的问题就是建立离散点间的拓扑关系,实现基于邻域关系的快速查找。 k-d树 (k-dime

PCL中可用的PointT类型

PCL中可用的PointT类型: PointXYZ——成员变量:float x,y,z;      PointXYZ是使用最常见的一个点数据类型,因为他之包含三维XYZ坐标信息,这三个浮点数附加一个浮点数来满足存储对齐,可以通过points[i].data[0]或points[i].x访问点X的坐标值 union{float data[4];struct{float x;f

点云python-pcl

PCL(Point Cloud Library)是在吸收了前人点云相关研究基础上建立起来的大型跨平台开源C++编程库,它实现了大量点云相关的通用算法和高效数据结构,涉及到点云获取、滤波、分割、配准、检索、特征提取、识别、追踪、曲面重建、可视化等。支持多种操作系统平台,可在Windows、Linux、Android、Mac OS X、部分嵌入式实时系统上运行。如果说OpenCV是2D信息获取与处理的

PCL常见错误集锦

我刚刚开始接触PCL,懂的东西也很少,所以总是出现各种各样的问题,每次遇见问题的时候要查找各种各样的资料,很费时间。所以,今天我把我遇见的常见问题分享给大家,讲解的步骤尽量详细,让和我一样基础差的小伙伴能尽快进入到PCL点云库的学习中,希望能和大家进步。 运行环境:PCL-1.8.0-AllInOne-msvc2013-win64,是64位的,VS2013英文版。   问题1:如何获取

PCL

一、PCL安装 https://www.cnblogs.com/lifeofershisui/p/9037829.html sudo apt-get install ros-kinetic-pcl-conversions 1、预装依赖库 sudo add-apt-repository ppa:v-launchpad-jochen-sprickerhof-de/pcl sudo apt-g

PCL-基于超体聚类的LCCP点云分割

目录 一、LCCP方法二、代码实现三、实验结果四、总结五、相关链接 一、LCCP方法 LCCP指的是Local Convexity-Constrained Patch,即局部凸约束补丁的意思。LCCP方法的基本思想是在图像中找到局部区域内的凸结构,并将这些结构用于分割图像或提取特征。这种方法可以帮助识别图像中的凸物体,并对它们进行分割。LCCP方法通常结合了空间和法线信息,以提高

【C++PCL】点云处理稳健姿态估计配准

作者:迅卓科技 简介:本人从事过多项点云项目,并且负责的项目均已得到好评! 公众号:迅卓科技,一个可以让您可以学习点云的好地方 重点:每个模块都有参数如何调试的讲解,即调试某个参数对结果的影响是什么,大家有问题可以评论哈,如果文章有错误的地方,欢迎来指出错误的地方。 目录         1.原理介绍         2.代码效果         3.源码展示         4.

【C++PCL】点云处理Kd-tree原理

作者:迅卓科技 简介:本人从事过多项点云项目,并且负责的项目均已得到好评! 公众号:迅卓科技,一个可以让您可以学习点云的好地方 重点:每个模块都有参数如何调试的讲解,即调试某个参数对结果的影响是什么,大家有问题可以评论哈,如果文章有错误的地方,欢迎来指出错误的地方。 目录         1.原理介绍 1.原理介绍         kd-tree是散乱点云的一种储存结构,它是一种

PCL 三次样条插值(二维点)

一、简介 在插值计算中,最简单的分段多项式近似应该是分段线性插值,它由连接一组数据点组成,仅仅只需要将这些点一一用直线进行顺序相连即可。不过线性函数插值的缺点也很明显,就是在两个子区间变化的比较突兀,也就是没有可微性(不够光滑)。因此我们需要更为符合物理情况的一种曲线,一般来讲,三次多项式包含四个常数,它可以确保插值函数不仅在区间上连续可微,而且具有连续的二阶导数,这样就可以达到我们想要节点处