【译】PCL官网教程翻译(19):从深度图像中提取NARF特征 - How to extract NARF Features from a range image

本文主要是介绍【译】PCL官网教程翻译(19):从深度图像中提取NARF特征 - How to extract NARF Features from a range image,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

英文原文阅读

从深度图像中提取NARF特征

本教程演示如何从深度图像中提取位于NARF关键点位置的NARF描述符。可执行文件使我们能够从磁盘加载点云(如果没有提供,也可以创建点云),从中提取感兴趣的点,然后在这些位置计算描述符。然后,它在图像和3D查看器中可视化这些位置。

代码

首先,在您喜欢的编辑器中创建一个名为narf_feature_extract .cpp的文件,并在其中放置以下代码:

/* \作者Bastian Steder */#include <iostream>#include <pcl/range_image/range_image.h>
#include <pcl/io/pcd_io.h>
#include <pcl/visualization/range_image_visualizer.h>
#include <pcl/visualization/pcl_visualizer.h>
#include <pcl/features/range_image_border_extractor.h>
#include <pcl/keypoints/narf_keypoint.h>
#include <pcl/features/narf_descriptor.h>
#include <pcl/console/parse.h>typedef pcl::PointXYZ PointType;// --------------------
// -----参数-----
// --------------------
float angular_resolution = 0.5f;
float support_size = 0.2f;
pcl::RangeImage::CoordinateFrame coordinate_frame = pcl::RangeImage::CAMERA_FRAME;
bool setUnseenToMaxRange = false;
bool rotation_invariant = true;// --------------
// -----帮助-----
// --------------
void 
printUsage (const char* progName)
{std::cout << "\n\nUsage: "<<progName<<" [options] <scene.pcd>\n\n"<< "Options:\n"<< "-------------------------------------------\n"<< "-r <float>   angular resolution in degrees (default "<<angular_resolution<<")\n"<< "-c <int>     coordinate frame (default "<< (int)coordinate_frame<<")\n"<< "-m           Treat all unseen points to max range\n"<< "-s <float>   support size for the interest points (diameter of the used sphere - ""default "<<support_size<<")\n"<< "-o <0/1>     switch rotational invariant version of the feature on/off"<<               " (default "<< (int)rotation_invariant<<")\n"<< "-h           this help\n"<< "\n\n";
}void 
setViewerPose (pcl::visualization::PCLVisualizer& viewer, const Eigen::Affine3f& viewer_pose)
{Eigen::Vector3f pos_vector = viewer_pose * Eigen::Vector3f (0, 0, 0);Eigen::Vector3f look_at_vector = viewer_pose.rotation () * Eigen::Vector3f (0, 0, 1) + pos_vector;Eigen::Vector3f up_vector = viewer_pose.rotation () * Eigen::Vector3f (0, -1, 0);viewer.setCameraPosition (pos_vector[0], pos_vector[1], pos_vector[2],look_at_vector[0], look_at_vector[1], look_at_vector[2],up_vector[0], up_vector[1], up_vector[2]);
}// --------------
// -----主程序-----
// --------------
int 
main (int argc, char** argv)
{// --------------------------------------// -----解析命令行参数-----// --------------------------------------if (pcl::console::find_argument (argc, argv, "-h") >= 0){printUsage (argv[0]);return 0;}if (pcl::console::find_argument (argc, argv, "-m") >= 0){setUnseenToMaxRange = true;std::cout << "Setting unseen values in range image to maximum range readings.\n";}if (pcl::console::parse (argc, argv, "-o", rotation_invariant) >= 0)std::cout << "Switching rotation invariant feature version "<< (rotation_invariant ? "on" : "off")<<".\n";int tmp_coordinate_frame;if (pcl::console::parse (argc, argv, "-c", tmp_coordinate_frame) >= 0){coordinate_frame = pcl::RangeImage::CoordinateFrame (tmp_coordinate_frame);std::cout << "Using coordinate frame "<< (int)coordinate_frame<<".\n";}if (pcl::console::parse (argc, argv, "-s", support_size) >= 0)std::cout << "Setting support size to "<<support_size<<".\n";if (pcl::console::parse (argc, argv, "-r", angular_resolution) >= 0)std::cout << "Setting angular resolution to "<<angular_resolution<<"deg.\n";angular_resolution = pcl::deg2rad (angular_resolution);// ------------------------------------------------------------------// -----读取pcd文件或创建示例点云(如果没有给出)-----// ------------------------------------------------------------------pcl::PointCloud<PointType>::Ptr point_cloud_ptr (new pcl::PointCloud<PointType>);pcl::PointCloud<PointType>& point_cloud = *point_cloud_ptr;pcl::PointCloud<pcl::PointWithViewpoint> far_ranges;Eigen::Affine3f scene_sensor_pose (Eigen::Affine3f::Identity ());std::vector<int> pcd_filename_indices = pcl::console::parse_file_extension_argument (argc, argv, "pcd");if (!pcd_filename_indices.empty ()){std::string filename = argv[pcd_filename_indices[0]];if (pcl::io::loadPCDFile (filename, point_cloud) == -1){std::cerr << "Was not able to open file \""<<filename<<"\".\n";printUsage (argv[0]);return 0;}scene_sensor_pose = Eigen::Affine3f (Eigen::Translation3f (point_cloud.sensor_origin_[0],point_cloud.sensor_origin_[1],point_cloud.sensor_origin_[2])) *Eigen::Affine3f (point_cloud.sensor_orientation_);std::string far_ranges_filename = pcl::getFilenameWithoutExtension (filename)+"_far_ranges.pcd";if (pcl::io::loadPCDFile (far_ranges_filename.c_str (), far_ranges) == -1)std::cout << "Far ranges file \""<<far_ranges_filename<<"\" does not exists.\n";}else{setUnseenToMaxRange = true;std::cout << "\nNo *.pcd file given => Generating example point cloud.\n\n";for (float x=-0.5f; x<=0.5f; x+=0.01f){for (float y=-0.5f; y<=0.5f; y+=0.01f){PointType point;  point.x = x;  point.y = y;  point.z = 2.0f - y;point_cloud.points.push_back (point);}}point_cloud.width = (int) point_cloud.points.size ();  point_cloud.height = 1;}// -----------------------------------------------// -----从点云创建深度图像-----// -----------------------------------------------float noise_level = 0.0;float min_range = 0.0f;int border_size = 1;pcl::RangeImage::Ptr range_image_ptr (new pcl::RangeImage);pcl::RangeImage& range_image = *range_image_ptr;   range_image.createFromPointCloud (point_cloud, angular_resolution, pcl::deg2rad (360.0f), pcl::deg2rad (180.0f),scene_sensor_pose, coordinate_frame, noise_level, min_range, border_size);range_image.integrateFarRanges (far_ranges);if (setUnseenToMaxRange)range_image.setUnseenToMaxRange ();// --------------------------------------------// -----打开3D查看器并添加点云-----// --------------------------------------------pcl::visualization::PCLVisualizer viewer ("3D Viewer");viewer.setBackgroundColor (1, 1, 1);pcl::visualization::PointCloudColorHandlerCustom<pcl::PointWithRange> range_image_color_handler (range_image_ptr, 0, 0, 0);viewer.addPointCloud (range_image_ptr, range_image_color_handler, "range image");viewer.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 1, "range image");//viewer.addCoordinateSystem (1.0f, "global");//PointCloudColorHandlerCustom<PointType> point_cloud_color_handler (point_cloud_ptr, 150, 150, 150);//viewer.addPointCloud (point_cloud_ptr, point_cloud_color_handler, "original point cloud");viewer.initCameraParameters ();setViewerPose (viewer, range_image.getTransformationToWorldSystem ());// --------------------------// -----显示深度图像-----// --------------------------pcl::visualization::RangeImageVisualizer range_image_widget ("Range image");range_image_widget.showRangeImage (range_image);// --------------------------------// -----提取NARF关键点-----// --------------------------------pcl::RangeImageBorderExtractor range_image_border_extractor;pcl::NarfKeypoint narf_keypoint_detector;narf_keypoint_detector.setRangeImageBorderExtractor (&range_image_border_extractor);narf_keypoint_detector.setRangeImage (&range_image);narf_keypoint_detector.getParameters ().support_size = support_size;pcl::PointCloud<int> keypoint_indices;narf_keypoint_detector.compute (keypoint_indices);std::cout << "Found "<<keypoint_indices.points.size ()<<" key points.\n";// ----------------------------------------------// -----显示深度图像小部件中的关键点-----// ----------------------------------------------//for (size_t i=0; i<keypoint_indices.points.size (); ++i)//range_image_widget.markPoint (keypoint_indices.points[i]%range_image.width,//keypoint_indices.points[i]/range_image.width);// -------------------------------------// -----在3D查看器中显示关键点-----// -------------------------------------pcl::PointCloud<pcl::PointXYZ>::Ptr keypoints_ptr (new pcl::PointCloud<pcl::PointXYZ>);pcl::PointCloud<pcl::PointXYZ>& keypoints = *keypoints_ptr;keypoints.points.resize (keypoint_indices.points.size ());for (size_t i=0; i<keypoint_indices.points.size (); ++i)keypoints.points[i].getVector3fMap () = range_image.points[keypoint_indices.points[i]].getVector3fMap ();pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ> keypoints_color_handler (keypoints_ptr, 0, 255, 0);viewer.addPointCloud<pcl::PointXYZ> (keypoints_ptr, keypoints_color_handler, "keypoints");viewer.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 7, "keypoints");// ------------------------------------------------------// -----提取感兴趣点的NARF描述符-----// ------------------------------------------------------std::vector<int> keypoint_indices2;keypoint_indices2.resize (keypoint_indices.points.size ());for (unsigned int i=0; i<keypoint_indices.size (); ++i) // This step is necessary to get the right vector typekeypoint_indices2[i]=keypoint_indices.points[i];pcl::NarfDescriptor narf_descriptor (&range_image, &keypoint_indices2);narf_descriptor.getParameters ().support_size = support_size;narf_descriptor.getParameters ().rotation_invariant = rotation_invariant;pcl::PointCloud<pcl::Narf36> narf_descriptors;narf_descriptor.compute (narf_descriptors);std::cout << "Extracted "<<narf_descriptors.size ()<<" descriptors for "<<keypoint_indices.points.size ()<< " keypoints.\n";//--------------------// -----主循环-----//--------------------while (!viewer.wasStopped ()){range_image_widget.spinOnce ();  // process GUI eventsviewer.spinOnce ();pcl_sleep(0.01);}
}

解释

在开始时,我们执行命令行解析,从磁盘读取点云(如果没有提供,也可以创建点云),创建一个深度图像并从中提取NARF关键点。所有这些步骤都已经在前面的教程NARF关键点提取中介绍过。
有趣的部分从这里开始:

...
std::vector<int> keypoint_indices2;
keypoint_indices2.resize(keypoint_indices.points.size());
for (unsigned int i=0; i<keypoint_indices.size(); ++i) // This step is necessary to get the right vector typekeypoint_indices2[i]=keypoint_indices.points[i];
...

这里我们将索引复制到作为特征输入的向量上。

...
pcl::NarfDescriptor narf_descriptor(&range_image, &keypoint_indices2);
narf_descriptor.getParameters().support_size = support_size;
narf_descriptor.getParameters().rotation_invariant = rotation_invariant;
pcl::PointCloud<pcl::Narf36> narf_descriptors;
narf_descriptor.compute(narf_descriptors);
std::cout << "Extracted "<<narf_descriptors.size()<<" descriptors for "<<keypoint_indices.points.size()<< " keypoints.\n";
...

这段代码实际计算描述符。它首先创建NarfDescriptor对象并给它输入数据(关键点索引和范围图像)。然后设置两个重要参数。支持大小,它决定计算描述符所在区域的大小,以及是否应该使用NARF描述符的旋转不变量(围绕正常旋转)版本。我们创建输出点云并执行实际计算。最后输出关键字个数和提取的描述符个数。这些数字可能不同。首先,描述符的计算可能会失败,因为深度图像中没有足够的点(分辨率太低)。或者可能在同一个地方有多个描述符,但是针对不同的主旋转。
得到的PointCloud包含类型Narf36(请参阅common/include/pcl/point_types.h),并将描述符存储为36个元素float和x、y、z、roll、pitch、yaw,以描述提取特征的本地坐标系。现在可以将描述符与曼哈顿距离(绝对差异的总和)进行比较。
剩下的代码只是在深度图像小部件和3D查看器中可视化关键点位置。

编译和运行程序

在CMakeLists.txt文件中添加以下行:

cmake_minimum_required(VERSION 2.6 FATAL_ERROR)project(narf_feature_extraction)find_package(PCL 1.3 REQUIRED)include_directories(${PCL_INCLUDE_DIRS})
link_directories(${PCL_LIBRARY_DIRS})
add_definitions(${PCL_DEFINITIONS})add_executable (narf_feature_extraction narf_feature_extraction.cpp)
target_link_libraries (narf_feature_extraction ${PCL_LIBRARIES})

完成可执行文件后,就可以运行它了。只需要:

$ ./narf_feature_extraction -m

这里使用一个存在空间中的矩形的自动生成点云。关键点在角落里。参数-m是必要的,因为矩形周围的区域是不可见的,因此系统无法将其检测为边框。选项-m将不可见区域更改为最大范围读数,从而使系统能够使用这些边界。
你也可以用硬盘上的点云文件试试:

$ ./narf_feature_extraction <point_cloud.pcd>

输出结果应该类似如下:
在这里插入图片描述

这篇关于【译】PCL官网教程翻译(19):从深度图像中提取NARF特征 - How to extract NARF Features from a range image的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1126981

相关文章

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者

基于UE5和ROS2的激光雷达+深度RGBD相机小车的仿真指南(五):Blender锥桶建模

前言 本系列教程旨在使用UE5配置一个具备激光雷达+深度摄像机的仿真小车,并使用通过跨平台的方式进行ROS2和UE5仿真的通讯,达到小车自主导航的目的。本教程默认有ROS2导航及其gazebo仿真相关方面基础,Nav2相关的学习教程可以参考本人的其他博客Nav2代价地图实现和原理–Nav2源码解读之CostMap2D(上)-CSDN博客往期教程: 第一期:基于UE5和ROS2的激光雷达+深度RG

韦季李输入法_输入法和鼠标的深度融合

在数字化输入的新纪元,传统键盘输入方式正悄然进化。以往,面对实体键盘,我们常需目光游离于屏幕与键盘之间,以确认指尖下的精准位置。而屏幕键盘虽直观可见,却常因占据屏幕空间,迫使我们在操作与视野间做出妥协,频繁调整布局以兼顾输入与界面浏览。 幸而,韦季李输入法的横空出世,彻底颠覆了这一现状。它不仅对输入界面进行了革命性的重构,更巧妙地将鼠标这一传统外设融入其中,开创了一种前所未有的交互体验。 想象

论文翻译:arxiv-2024 Benchmark Data Contamination of Large Language Models: A Survey

Benchmark Data Contamination of Large Language Models: A Survey https://arxiv.org/abs/2406.04244 大规模语言模型的基准数据污染:一项综述 文章目录 大规模语言模型的基准数据污染:一项综述摘要1 引言 摘要 大规模语言模型(LLMs),如GPT-4、Claude-3和Gemini的快

沁恒CH32在MounRiver Studio上环境配置以及使用详细教程

目录 1.  RISC-V简介 2.  CPU架构现状 3.  MounRiver Studio软件下载 4.  MounRiver Studio软件安装 5.  MounRiver Studio软件介绍 6.  创建工程 7.  编译代码 1.  RISC-V简介         RISC就是精简指令集计算机(Reduced Instruction SetCom

免费也能高质量!2024年免费录屏软件深度对比评测

我公司因为客户覆盖面广的原因经常会开远程会议,有时候说的内容比较广需要引用多份的数据,我记录起来有一定难度,所以一般都用录屏工具来记录会议内容。这次我们来一起探索有什么免费录屏工具可以提高我们的工作效率吧。 1.福晰录屏大师 链接直达:https://www.foxitsoftware.cn/REC/  录屏软件录屏功能就是本职,这款录屏工具在录屏模式上提供了多种选项,可以选择屏幕录制、窗口

前端技术(七)——less 教程

一、less简介 1. less是什么? less是一种动态样式语言,属于css预处理器的范畴,它扩展了CSS语言,增加了变量、Mixin、函数等特性,使CSS 更易维护和扩展LESS 既可以在 客户端 上运行 ,也可以借助Node.js在服务端运行。 less的中文官网:https://lesscss.cn/ 2. less编译工具 koala 官网 http://koala-app.