【译】PCL官网教程翻译(19):从深度图像中提取NARF特征 - How to extract NARF Features from a range image

本文主要是介绍【译】PCL官网教程翻译(19):从深度图像中提取NARF特征 - How to extract NARF Features from a range image,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

英文原文阅读

从深度图像中提取NARF特征

本教程演示如何从深度图像中提取位于NARF关键点位置的NARF描述符。可执行文件使我们能够从磁盘加载点云(如果没有提供,也可以创建点云),从中提取感兴趣的点,然后在这些位置计算描述符。然后,它在图像和3D查看器中可视化这些位置。

代码

首先,在您喜欢的编辑器中创建一个名为narf_feature_extract .cpp的文件,并在其中放置以下代码:

/* \作者Bastian Steder */#include <iostream>#include <pcl/range_image/range_image.h>
#include <pcl/io/pcd_io.h>
#include <pcl/visualization/range_image_visualizer.h>
#include <pcl/visualization/pcl_visualizer.h>
#include <pcl/features/range_image_border_extractor.h>
#include <pcl/keypoints/narf_keypoint.h>
#include <pcl/features/narf_descriptor.h>
#include <pcl/console/parse.h>typedef pcl::PointXYZ PointType;// --------------------
// -----参数-----
// --------------------
float angular_resolution = 0.5f;
float support_size = 0.2f;
pcl::RangeImage::CoordinateFrame coordinate_frame = pcl::RangeImage::CAMERA_FRAME;
bool setUnseenToMaxRange = false;
bool rotation_invariant = true;// --------------
// -----帮助-----
// --------------
void 
printUsage (const char* progName)
{std::cout << "\n\nUsage: "<<progName<<" [options] <scene.pcd>\n\n"<< "Options:\n"<< "-------------------------------------------\n"<< "-r <float>   angular resolution in degrees (default "<<angular_resolution<<")\n"<< "-c <int>     coordinate frame (default "<< (int)coordinate_frame<<")\n"<< "-m           Treat all unseen points to max range\n"<< "-s <float>   support size for the interest points (diameter of the used sphere - ""default "<<support_size<<")\n"<< "-o <0/1>     switch rotational invariant version of the feature on/off"<<               " (default "<< (int)rotation_invariant<<")\n"<< "-h           this help\n"<< "\n\n";
}void 
setViewerPose (pcl::visualization::PCLVisualizer& viewer, const Eigen::Affine3f& viewer_pose)
{Eigen::Vector3f pos_vector = viewer_pose * Eigen::Vector3f (0, 0, 0);Eigen::Vector3f look_at_vector = viewer_pose.rotation () * Eigen::Vector3f (0, 0, 1) + pos_vector;Eigen::Vector3f up_vector = viewer_pose.rotation () * Eigen::Vector3f (0, -1, 0);viewer.setCameraPosition (pos_vector[0], pos_vector[1], pos_vector[2],look_at_vector[0], look_at_vector[1], look_at_vector[2],up_vector[0], up_vector[1], up_vector[2]);
}// --------------
// -----主程序-----
// --------------
int 
main (int argc, char** argv)
{// --------------------------------------// -----解析命令行参数-----// --------------------------------------if (pcl::console::find_argument (argc, argv, "-h") >= 0){printUsage (argv[0]);return 0;}if (pcl::console::find_argument (argc, argv, "-m") >= 0){setUnseenToMaxRange = true;std::cout << "Setting unseen values in range image to maximum range readings.\n";}if (pcl::console::parse (argc, argv, "-o", rotation_invariant) >= 0)std::cout << "Switching rotation invariant feature version "<< (rotation_invariant ? "on" : "off")<<".\n";int tmp_coordinate_frame;if (pcl::console::parse (argc, argv, "-c", tmp_coordinate_frame) >= 0){coordinate_frame = pcl::RangeImage::CoordinateFrame (tmp_coordinate_frame);std::cout << "Using coordinate frame "<< (int)coordinate_frame<<".\n";}if (pcl::console::parse (argc, argv, "-s", support_size) >= 0)std::cout << "Setting support size to "<<support_size<<".\n";if (pcl::console::parse (argc, argv, "-r", angular_resolution) >= 0)std::cout << "Setting angular resolution to "<<angular_resolution<<"deg.\n";angular_resolution = pcl::deg2rad (angular_resolution);// ------------------------------------------------------------------// -----读取pcd文件或创建示例点云(如果没有给出)-----// ------------------------------------------------------------------pcl::PointCloud<PointType>::Ptr point_cloud_ptr (new pcl::PointCloud<PointType>);pcl::PointCloud<PointType>& point_cloud = *point_cloud_ptr;pcl::PointCloud<pcl::PointWithViewpoint> far_ranges;Eigen::Affine3f scene_sensor_pose (Eigen::Affine3f::Identity ());std::vector<int> pcd_filename_indices = pcl::console::parse_file_extension_argument (argc, argv, "pcd");if (!pcd_filename_indices.empty ()){std::string filename = argv[pcd_filename_indices[0]];if (pcl::io::loadPCDFile (filename, point_cloud) == -1){std::cerr << "Was not able to open file \""<<filename<<"\".\n";printUsage (argv[0]);return 0;}scene_sensor_pose = Eigen::Affine3f (Eigen::Translation3f (point_cloud.sensor_origin_[0],point_cloud.sensor_origin_[1],point_cloud.sensor_origin_[2])) *Eigen::Affine3f (point_cloud.sensor_orientation_);std::string far_ranges_filename = pcl::getFilenameWithoutExtension (filename)+"_far_ranges.pcd";if (pcl::io::loadPCDFile (far_ranges_filename.c_str (), far_ranges) == -1)std::cout << "Far ranges file \""<<far_ranges_filename<<"\" does not exists.\n";}else{setUnseenToMaxRange = true;std::cout << "\nNo *.pcd file given => Generating example point cloud.\n\n";for (float x=-0.5f; x<=0.5f; x+=0.01f){for (float y=-0.5f; y<=0.5f; y+=0.01f){PointType point;  point.x = x;  point.y = y;  point.z = 2.0f - y;point_cloud.points.push_back (point);}}point_cloud.width = (int) point_cloud.points.size ();  point_cloud.height = 1;}// -----------------------------------------------// -----从点云创建深度图像-----// -----------------------------------------------float noise_level = 0.0;float min_range = 0.0f;int border_size = 1;pcl::RangeImage::Ptr range_image_ptr (new pcl::RangeImage);pcl::RangeImage& range_image = *range_image_ptr;   range_image.createFromPointCloud (point_cloud, angular_resolution, pcl::deg2rad (360.0f), pcl::deg2rad (180.0f),scene_sensor_pose, coordinate_frame, noise_level, min_range, border_size);range_image.integrateFarRanges (far_ranges);if (setUnseenToMaxRange)range_image.setUnseenToMaxRange ();// --------------------------------------------// -----打开3D查看器并添加点云-----// --------------------------------------------pcl::visualization::PCLVisualizer viewer ("3D Viewer");viewer.setBackgroundColor (1, 1, 1);pcl::visualization::PointCloudColorHandlerCustom<pcl::PointWithRange> range_image_color_handler (range_image_ptr, 0, 0, 0);viewer.addPointCloud (range_image_ptr, range_image_color_handler, "range image");viewer.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 1, "range image");//viewer.addCoordinateSystem (1.0f, "global");//PointCloudColorHandlerCustom<PointType> point_cloud_color_handler (point_cloud_ptr, 150, 150, 150);//viewer.addPointCloud (point_cloud_ptr, point_cloud_color_handler, "original point cloud");viewer.initCameraParameters ();setViewerPose (viewer, range_image.getTransformationToWorldSystem ());// --------------------------// -----显示深度图像-----// --------------------------pcl::visualization::RangeImageVisualizer range_image_widget ("Range image");range_image_widget.showRangeImage (range_image);// --------------------------------// -----提取NARF关键点-----// --------------------------------pcl::RangeImageBorderExtractor range_image_border_extractor;pcl::NarfKeypoint narf_keypoint_detector;narf_keypoint_detector.setRangeImageBorderExtractor (&range_image_border_extractor);narf_keypoint_detector.setRangeImage (&range_image);narf_keypoint_detector.getParameters ().support_size = support_size;pcl::PointCloud<int> keypoint_indices;narf_keypoint_detector.compute (keypoint_indices);std::cout << "Found "<<keypoint_indices.points.size ()<<" key points.\n";// ----------------------------------------------// -----显示深度图像小部件中的关键点-----// ----------------------------------------------//for (size_t i=0; i<keypoint_indices.points.size (); ++i)//range_image_widget.markPoint (keypoint_indices.points[i]%range_image.width,//keypoint_indices.points[i]/range_image.width);// -------------------------------------// -----在3D查看器中显示关键点-----// -------------------------------------pcl::PointCloud<pcl::PointXYZ>::Ptr keypoints_ptr (new pcl::PointCloud<pcl::PointXYZ>);pcl::PointCloud<pcl::PointXYZ>& keypoints = *keypoints_ptr;keypoints.points.resize (keypoint_indices.points.size ());for (size_t i=0; i<keypoint_indices.points.size (); ++i)keypoints.points[i].getVector3fMap () = range_image.points[keypoint_indices.points[i]].getVector3fMap ();pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ> keypoints_color_handler (keypoints_ptr, 0, 255, 0);viewer.addPointCloud<pcl::PointXYZ> (keypoints_ptr, keypoints_color_handler, "keypoints");viewer.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 7, "keypoints");// ------------------------------------------------------// -----提取感兴趣点的NARF描述符-----// ------------------------------------------------------std::vector<int> keypoint_indices2;keypoint_indices2.resize (keypoint_indices.points.size ());for (unsigned int i=0; i<keypoint_indices.size (); ++i) // This step is necessary to get the right vector typekeypoint_indices2[i]=keypoint_indices.points[i];pcl::NarfDescriptor narf_descriptor (&range_image, &keypoint_indices2);narf_descriptor.getParameters ().support_size = support_size;narf_descriptor.getParameters ().rotation_invariant = rotation_invariant;pcl::PointCloud<pcl::Narf36> narf_descriptors;narf_descriptor.compute (narf_descriptors);std::cout << "Extracted "<<narf_descriptors.size ()<<" descriptors for "<<keypoint_indices.points.size ()<< " keypoints.\n";//--------------------// -----主循环-----//--------------------while (!viewer.wasStopped ()){range_image_widget.spinOnce ();  // process GUI eventsviewer.spinOnce ();pcl_sleep(0.01);}
}

解释

在开始时,我们执行命令行解析,从磁盘读取点云(如果没有提供,也可以创建点云),创建一个深度图像并从中提取NARF关键点。所有这些步骤都已经在前面的教程NARF关键点提取中介绍过。
有趣的部分从这里开始:

...
std::vector<int> keypoint_indices2;
keypoint_indices2.resize(keypoint_indices.points.size());
for (unsigned int i=0; i<keypoint_indices.size(); ++i) // This step is necessary to get the right vector typekeypoint_indices2[i]=keypoint_indices.points[i];
...

这里我们将索引复制到作为特征输入的向量上。

...
pcl::NarfDescriptor narf_descriptor(&range_image, &keypoint_indices2);
narf_descriptor.getParameters().support_size = support_size;
narf_descriptor.getParameters().rotation_invariant = rotation_invariant;
pcl::PointCloud<pcl::Narf36> narf_descriptors;
narf_descriptor.compute(narf_descriptors);
std::cout << "Extracted "<<narf_descriptors.size()<<" descriptors for "<<keypoint_indices.points.size()<< " keypoints.\n";
...

这段代码实际计算描述符。它首先创建NarfDescriptor对象并给它输入数据(关键点索引和范围图像)。然后设置两个重要参数。支持大小,它决定计算描述符所在区域的大小,以及是否应该使用NARF描述符的旋转不变量(围绕正常旋转)版本。我们创建输出点云并执行实际计算。最后输出关键字个数和提取的描述符个数。这些数字可能不同。首先,描述符的计算可能会失败,因为深度图像中没有足够的点(分辨率太低)。或者可能在同一个地方有多个描述符,但是针对不同的主旋转。
得到的PointCloud包含类型Narf36(请参阅common/include/pcl/point_types.h),并将描述符存储为36个元素float和x、y、z、roll、pitch、yaw,以描述提取特征的本地坐标系。现在可以将描述符与曼哈顿距离(绝对差异的总和)进行比较。
剩下的代码只是在深度图像小部件和3D查看器中可视化关键点位置。

编译和运行程序

在CMakeLists.txt文件中添加以下行:

cmake_minimum_required(VERSION 2.6 FATAL_ERROR)project(narf_feature_extraction)find_package(PCL 1.3 REQUIRED)include_directories(${PCL_INCLUDE_DIRS})
link_directories(${PCL_LIBRARY_DIRS})
add_definitions(${PCL_DEFINITIONS})add_executable (narf_feature_extraction narf_feature_extraction.cpp)
target_link_libraries (narf_feature_extraction ${PCL_LIBRARIES})

完成可执行文件后,就可以运行它了。只需要:

$ ./narf_feature_extraction -m

这里使用一个存在空间中的矩形的自动生成点云。关键点在角落里。参数-m是必要的,因为矩形周围的区域是不可见的,因此系统无法将其检测为边框。选项-m将不可见区域更改为最大范围读数,从而使系统能够使用这些边界。
你也可以用硬盘上的点云文件试试:

$ ./narf_feature_extraction <point_cloud.pcd>

输出结果应该类似如下:
在这里插入图片描述

这篇关于【译】PCL官网教程翻译(19):从深度图像中提取NARF特征 - How to extract NARF Features from a range image的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1126981

相关文章

Python实现word文档内容智能提取以及合成

《Python实现word文档内容智能提取以及合成》这篇文章主要为大家详细介绍了如何使用Python实现从10个左右的docx文档中抽取内容,再调整语言风格后生成新的文档,感兴趣的小伙伴可以了解一下... 目录核心思路技术路径实现步骤阶段一:准备工作阶段二:内容提取 (python 脚本)阶段三:语言风格调

IDEA自动生成注释模板的配置教程

《IDEA自动生成注释模板的配置教程》本文介绍了如何在IntelliJIDEA中配置类和方法的注释模板,包括自动生成项目名称、包名、日期和时间等内容,以及如何定制参数和返回值的注释格式,需要的朋友可以... 目录项目场景配置方法类注释模板定义类开头的注释步骤类注释效果方法注释模板定义方法开头的注释步骤方法注

一文详解如何在Python中从字符串中提取部分内容

《一文详解如何在Python中从字符串中提取部分内容》:本文主要介绍如何在Python中从字符串中提取部分内容的相关资料,包括使用正则表达式、Pyparsing库、AST(抽象语法树)、字符串操作... 目录前言解决方案方法一:使用正则表达式方法二:使用 Pyparsing方法三:使用 AST方法四:使用字

Python虚拟环境终极(含PyCharm的使用教程)

《Python虚拟环境终极(含PyCharm的使用教程)》:本文主要介绍Python虚拟环境终极(含PyCharm的使用教程),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录一、为什么需要虚拟环境?二、虚拟环境创建方式对比三、命令行创建虚拟环境(venv)3.1 基础命令3

使用Node.js制作图片上传服务的详细教程

《使用Node.js制作图片上传服务的详细教程》在现代Web应用开发中,图片上传是一项常见且重要的功能,借助Node.js强大的生态系统,我们可以轻松搭建高效的图片上传服务,本文将深入探讨如何使用No... 目录准备工作搭建 Express 服务器配置 multer 进行图片上传处理图片上传请求完整代码示例

OpenCV图像形态学的实现

《OpenCV图像形态学的实现》本文主要介绍了OpenCV图像形态学的实现,包括腐蚀、膨胀、开运算、闭运算、梯度运算、顶帽运算和黑帽运算,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起... 目录一、图像形态学简介二、腐蚀(Erosion)1. 原理2. OpenCV 实现三、膨胀China编程(

python连接本地SQL server详细图文教程

《python连接本地SQLserver详细图文教程》在数据分析领域,经常需要从数据库中获取数据进行分析和处理,下面:本文主要介绍python连接本地SQLserver的相关资料,文中通过代码... 目录一.设置本地账号1.新建用户2.开启双重验证3,开启TCP/IP本地服务二js.python连接实例1.

Python 安装和配置flask, flask_cors的图文教程

《Python安装和配置flask,flask_cors的图文教程》:本文主要介绍Python安装和配置flask,flask_cors的图文教程,本文通过图文并茂的形式给大家介绍的非常详细,... 目录一.python安装:二,配置环境变量,三:检查Python安装和环境变量,四:安装flask和flas

Spring Security基于数据库的ABAC属性权限模型实战开发教程

《SpringSecurity基于数据库的ABAC属性权限模型实战开发教程》:本文主要介绍SpringSecurity基于数据库的ABAC属性权限模型实战开发教程,本文给大家介绍的非常详细,对大... 目录1. 前言2. 权限决策依据RBACABAC综合对比3. 数据库表结构说明4. 实战开始5. MyBA

Ubuntu中远程连接Mysql数据库的详细图文教程

《Ubuntu中远程连接Mysql数据库的详细图文教程》Ubuntu是一个以桌面应用为主的Linux发行版操作系统,这篇文章主要为大家详细介绍了Ubuntu中远程连接Mysql数据库的详细图文教程,有... 目录1、版本2、检查有没有mysql2.1 查询是否安装了Mysql包2.2 查看Mysql版本2.