【译】PCL官网教程翻译(19):从深度图像中提取NARF特征 - How to extract NARF Features from a range image

本文主要是介绍【译】PCL官网教程翻译(19):从深度图像中提取NARF特征 - How to extract NARF Features from a range image,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

英文原文阅读

从深度图像中提取NARF特征

本教程演示如何从深度图像中提取位于NARF关键点位置的NARF描述符。可执行文件使我们能够从磁盘加载点云(如果没有提供,也可以创建点云),从中提取感兴趣的点,然后在这些位置计算描述符。然后,它在图像和3D查看器中可视化这些位置。

代码

首先,在您喜欢的编辑器中创建一个名为narf_feature_extract .cpp的文件,并在其中放置以下代码:

/* \作者Bastian Steder */#include <iostream>#include <pcl/range_image/range_image.h>
#include <pcl/io/pcd_io.h>
#include <pcl/visualization/range_image_visualizer.h>
#include <pcl/visualization/pcl_visualizer.h>
#include <pcl/features/range_image_border_extractor.h>
#include <pcl/keypoints/narf_keypoint.h>
#include <pcl/features/narf_descriptor.h>
#include <pcl/console/parse.h>typedef pcl::PointXYZ PointType;// --------------------
// -----参数-----
// --------------------
float angular_resolution = 0.5f;
float support_size = 0.2f;
pcl::RangeImage::CoordinateFrame coordinate_frame = pcl::RangeImage::CAMERA_FRAME;
bool setUnseenToMaxRange = false;
bool rotation_invariant = true;// --------------
// -----帮助-----
// --------------
void 
printUsage (const char* progName)
{std::cout << "\n\nUsage: "<<progName<<" [options] <scene.pcd>\n\n"<< "Options:\n"<< "-------------------------------------------\n"<< "-r <float>   angular resolution in degrees (default "<<angular_resolution<<")\n"<< "-c <int>     coordinate frame (default "<< (int)coordinate_frame<<")\n"<< "-m           Treat all unseen points to max range\n"<< "-s <float>   support size for the interest points (diameter of the used sphere - ""default "<<support_size<<")\n"<< "-o <0/1>     switch rotational invariant version of the feature on/off"<<               " (default "<< (int)rotation_invariant<<")\n"<< "-h           this help\n"<< "\n\n";
}void 
setViewerPose (pcl::visualization::PCLVisualizer& viewer, const Eigen::Affine3f& viewer_pose)
{Eigen::Vector3f pos_vector = viewer_pose * Eigen::Vector3f (0, 0, 0);Eigen::Vector3f look_at_vector = viewer_pose.rotation () * Eigen::Vector3f (0, 0, 1) + pos_vector;Eigen::Vector3f up_vector = viewer_pose.rotation () * Eigen::Vector3f (0, -1, 0);viewer.setCameraPosition (pos_vector[0], pos_vector[1], pos_vector[2],look_at_vector[0], look_at_vector[1], look_at_vector[2],up_vector[0], up_vector[1], up_vector[2]);
}// --------------
// -----主程序-----
// --------------
int 
main (int argc, char** argv)
{// --------------------------------------// -----解析命令行参数-----// --------------------------------------if (pcl::console::find_argument (argc, argv, "-h") >= 0){printUsage (argv[0]);return 0;}if (pcl::console::find_argument (argc, argv, "-m") >= 0){setUnseenToMaxRange = true;std::cout << "Setting unseen values in range image to maximum range readings.\n";}if (pcl::console::parse (argc, argv, "-o", rotation_invariant) >= 0)std::cout << "Switching rotation invariant feature version "<< (rotation_invariant ? "on" : "off")<<".\n";int tmp_coordinate_frame;if (pcl::console::parse (argc, argv, "-c", tmp_coordinate_frame) >= 0){coordinate_frame = pcl::RangeImage::CoordinateFrame (tmp_coordinate_frame);std::cout << "Using coordinate frame "<< (int)coordinate_frame<<".\n";}if (pcl::console::parse (argc, argv, "-s", support_size) >= 0)std::cout << "Setting support size to "<<support_size<<".\n";if (pcl::console::parse (argc, argv, "-r", angular_resolution) >= 0)std::cout << "Setting angular resolution to "<<angular_resolution<<"deg.\n";angular_resolution = pcl::deg2rad (angular_resolution);// ------------------------------------------------------------------// -----读取pcd文件或创建示例点云(如果没有给出)-----// ------------------------------------------------------------------pcl::PointCloud<PointType>::Ptr point_cloud_ptr (new pcl::PointCloud<PointType>);pcl::PointCloud<PointType>& point_cloud = *point_cloud_ptr;pcl::PointCloud<pcl::PointWithViewpoint> far_ranges;Eigen::Affine3f scene_sensor_pose (Eigen::Affine3f::Identity ());std::vector<int> pcd_filename_indices = pcl::console::parse_file_extension_argument (argc, argv, "pcd");if (!pcd_filename_indices.empty ()){std::string filename = argv[pcd_filename_indices[0]];if (pcl::io::loadPCDFile (filename, point_cloud) == -1){std::cerr << "Was not able to open file \""<<filename<<"\".\n";printUsage (argv[0]);return 0;}scene_sensor_pose = Eigen::Affine3f (Eigen::Translation3f (point_cloud.sensor_origin_[0],point_cloud.sensor_origin_[1],point_cloud.sensor_origin_[2])) *Eigen::Affine3f (point_cloud.sensor_orientation_);std::string far_ranges_filename = pcl::getFilenameWithoutExtension (filename)+"_far_ranges.pcd";if (pcl::io::loadPCDFile (far_ranges_filename.c_str (), far_ranges) == -1)std::cout << "Far ranges file \""<<far_ranges_filename<<"\" does not exists.\n";}else{setUnseenToMaxRange = true;std::cout << "\nNo *.pcd file given => Generating example point cloud.\n\n";for (float x=-0.5f; x<=0.5f; x+=0.01f){for (float y=-0.5f; y<=0.5f; y+=0.01f){PointType point;  point.x = x;  point.y = y;  point.z = 2.0f - y;point_cloud.points.push_back (point);}}point_cloud.width = (int) point_cloud.points.size ();  point_cloud.height = 1;}// -----------------------------------------------// -----从点云创建深度图像-----// -----------------------------------------------float noise_level = 0.0;float min_range = 0.0f;int border_size = 1;pcl::RangeImage::Ptr range_image_ptr (new pcl::RangeImage);pcl::RangeImage& range_image = *range_image_ptr;   range_image.createFromPointCloud (point_cloud, angular_resolution, pcl::deg2rad (360.0f), pcl::deg2rad (180.0f),scene_sensor_pose, coordinate_frame, noise_level, min_range, border_size);range_image.integrateFarRanges (far_ranges);if (setUnseenToMaxRange)range_image.setUnseenToMaxRange ();// --------------------------------------------// -----打开3D查看器并添加点云-----// --------------------------------------------pcl::visualization::PCLVisualizer viewer ("3D Viewer");viewer.setBackgroundColor (1, 1, 1);pcl::visualization::PointCloudColorHandlerCustom<pcl::PointWithRange> range_image_color_handler (range_image_ptr, 0, 0, 0);viewer.addPointCloud (range_image_ptr, range_image_color_handler, "range image");viewer.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 1, "range image");//viewer.addCoordinateSystem (1.0f, "global");//PointCloudColorHandlerCustom<PointType> point_cloud_color_handler (point_cloud_ptr, 150, 150, 150);//viewer.addPointCloud (point_cloud_ptr, point_cloud_color_handler, "original point cloud");viewer.initCameraParameters ();setViewerPose (viewer, range_image.getTransformationToWorldSystem ());// --------------------------// -----显示深度图像-----// --------------------------pcl::visualization::RangeImageVisualizer range_image_widget ("Range image");range_image_widget.showRangeImage (range_image);// --------------------------------// -----提取NARF关键点-----// --------------------------------pcl::RangeImageBorderExtractor range_image_border_extractor;pcl::NarfKeypoint narf_keypoint_detector;narf_keypoint_detector.setRangeImageBorderExtractor (&range_image_border_extractor);narf_keypoint_detector.setRangeImage (&range_image);narf_keypoint_detector.getParameters ().support_size = support_size;pcl::PointCloud<int> keypoint_indices;narf_keypoint_detector.compute (keypoint_indices);std::cout << "Found "<<keypoint_indices.points.size ()<<" key points.\n";// ----------------------------------------------// -----显示深度图像小部件中的关键点-----// ----------------------------------------------//for (size_t i=0; i<keypoint_indices.points.size (); ++i)//range_image_widget.markPoint (keypoint_indices.points[i]%range_image.width,//keypoint_indices.points[i]/range_image.width);// -------------------------------------// -----在3D查看器中显示关键点-----// -------------------------------------pcl::PointCloud<pcl::PointXYZ>::Ptr keypoints_ptr (new pcl::PointCloud<pcl::PointXYZ>);pcl::PointCloud<pcl::PointXYZ>& keypoints = *keypoints_ptr;keypoints.points.resize (keypoint_indices.points.size ());for (size_t i=0; i<keypoint_indices.points.size (); ++i)keypoints.points[i].getVector3fMap () = range_image.points[keypoint_indices.points[i]].getVector3fMap ();pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ> keypoints_color_handler (keypoints_ptr, 0, 255, 0);viewer.addPointCloud<pcl::PointXYZ> (keypoints_ptr, keypoints_color_handler, "keypoints");viewer.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 7, "keypoints");// ------------------------------------------------------// -----提取感兴趣点的NARF描述符-----// ------------------------------------------------------std::vector<int> keypoint_indices2;keypoint_indices2.resize (keypoint_indices.points.size ());for (unsigned int i=0; i<keypoint_indices.size (); ++i) // This step is necessary to get the right vector typekeypoint_indices2[i]=keypoint_indices.points[i];pcl::NarfDescriptor narf_descriptor (&range_image, &keypoint_indices2);narf_descriptor.getParameters ().support_size = support_size;narf_descriptor.getParameters ().rotation_invariant = rotation_invariant;pcl::PointCloud<pcl::Narf36> narf_descriptors;narf_descriptor.compute (narf_descriptors);std::cout << "Extracted "<<narf_descriptors.size ()<<" descriptors for "<<keypoint_indices.points.size ()<< " keypoints.\n";//--------------------// -----主循环-----//--------------------while (!viewer.wasStopped ()){range_image_widget.spinOnce ();  // process GUI eventsviewer.spinOnce ();pcl_sleep(0.01);}
}

解释

在开始时,我们执行命令行解析,从磁盘读取点云(如果没有提供,也可以创建点云),创建一个深度图像并从中提取NARF关键点。所有这些步骤都已经在前面的教程NARF关键点提取中介绍过。
有趣的部分从这里开始:

...
std::vector<int> keypoint_indices2;
keypoint_indices2.resize(keypoint_indices.points.size());
for (unsigned int i=0; i<keypoint_indices.size(); ++i) // This step is necessary to get the right vector typekeypoint_indices2[i]=keypoint_indices.points[i];
...

这里我们将索引复制到作为特征输入的向量上。

...
pcl::NarfDescriptor narf_descriptor(&range_image, &keypoint_indices2);
narf_descriptor.getParameters().support_size = support_size;
narf_descriptor.getParameters().rotation_invariant = rotation_invariant;
pcl::PointCloud<pcl::Narf36> narf_descriptors;
narf_descriptor.compute(narf_descriptors);
std::cout << "Extracted "<<narf_descriptors.size()<<" descriptors for "<<keypoint_indices.points.size()<< " keypoints.\n";
...

这段代码实际计算描述符。它首先创建NarfDescriptor对象并给它输入数据(关键点索引和范围图像)。然后设置两个重要参数。支持大小,它决定计算描述符所在区域的大小,以及是否应该使用NARF描述符的旋转不变量(围绕正常旋转)版本。我们创建输出点云并执行实际计算。最后输出关键字个数和提取的描述符个数。这些数字可能不同。首先,描述符的计算可能会失败,因为深度图像中没有足够的点(分辨率太低)。或者可能在同一个地方有多个描述符,但是针对不同的主旋转。
得到的PointCloud包含类型Narf36(请参阅common/include/pcl/point_types.h),并将描述符存储为36个元素float和x、y、z、roll、pitch、yaw,以描述提取特征的本地坐标系。现在可以将描述符与曼哈顿距离(绝对差异的总和)进行比较。
剩下的代码只是在深度图像小部件和3D查看器中可视化关键点位置。

编译和运行程序

在CMakeLists.txt文件中添加以下行:

cmake_minimum_required(VERSION 2.6 FATAL_ERROR)project(narf_feature_extraction)find_package(PCL 1.3 REQUIRED)include_directories(${PCL_INCLUDE_DIRS})
link_directories(${PCL_LIBRARY_DIRS})
add_definitions(${PCL_DEFINITIONS})add_executable (narf_feature_extraction narf_feature_extraction.cpp)
target_link_libraries (narf_feature_extraction ${PCL_LIBRARIES})

完成可执行文件后,就可以运行它了。只需要:

$ ./narf_feature_extraction -m

这里使用一个存在空间中的矩形的自动生成点云。关键点在角落里。参数-m是必要的,因为矩形周围的区域是不可见的,因此系统无法将其检测为边框。选项-m将不可见区域更改为最大范围读数,从而使系统能够使用这些边界。
你也可以用硬盘上的点云文件试试:

$ ./narf_feature_extraction <point_cloud.pcd>

输出结果应该类似如下:
在这里插入图片描述

这篇关于【译】PCL官网教程翻译(19):从深度图像中提取NARF特征 - How to extract NARF Features from a range image的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1126981

相关文章

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

深度解析Spring Boot拦截器Interceptor与过滤器Filter的区别与实战指南

《深度解析SpringBoot拦截器Interceptor与过滤器Filter的区别与实战指南》本文深度解析SpringBoot中拦截器与过滤器的区别,涵盖执行顺序、依赖关系、异常处理等核心差异,并... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

SpringBoot开发中十大常见陷阱深度解析与避坑指南

《SpringBoot开发中十大常见陷阱深度解析与避坑指南》在SpringBoot的开发过程中,即使是经验丰富的开发者也难免会遇到各种棘手的问题,本文将针对SpringBoot开发中十大常见的“坑... 目录引言一、配置总出错?是不是同时用了.properties和.yml?二、换个位置配置就失效?搞清楚加

Java Web实现类似Excel表格锁定功能实战教程

《JavaWeb实现类似Excel表格锁定功能实战教程》本文将详细介绍通过创建特定div元素并利用CSS布局和JavaScript事件监听来实现类似Excel的锁定行和列效果的方法,感兴趣的朋友跟随... 目录1. 模拟Excel表格锁定功能2. 创建3个div元素实现表格锁定2.1 div元素布局设计2.

SpringBoot连接Redis集群教程

《SpringBoot连接Redis集群教程》:本文主要介绍SpringBoot连接Redis集群教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 依赖2. 修改配置文件3. 创建RedisClusterConfig4. 测试总结1. 依赖 <de

HTML5 中的<button>标签用法和特征

《HTML5中的<button>标签用法和特征》在HTML5中,button标签用于定义一个可点击的按钮,它是创建交互式网页的重要元素之一,本文将深入解析HTML5中的button标签,详细介绍其属... 目录引言<button> 标签的基本用法<button> 标签的属性typevaluedisabled

Python中提取文件名扩展名的多种方法实现

《Python中提取文件名扩展名的多种方法实现》在Python编程中,经常会遇到需要从文件名中提取扩展名的场景,Python提供了多种方法来实现这一功能,不同方法适用于不同的场景和需求,包括os.pa... 目录技术背景实现步骤方法一:使用os.path.splitext方法二:使用pathlib模块方法三