【译】PCL官网教程翻译(20):惯性矩和偏心距描述符 - Moment of inertia and eccentricity based descriptors

本文主要是介绍【译】PCL官网教程翻译(20):惯性矩和偏心距描述符 - Moment of inertia and eccentricity based descriptors,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

英文原网页查看。

基于惯性矩和偏心距的描述符

在本教程中,我们将学习如何使用pcl::MomentOfInertiaEstimation类来获得基于偏心量和惯性矩的描述符。这个类还允许提取轴对齐和有向的点云包围框。但是请记住,提取的OBB可能并不是最小的边界框。

理论基础

特征提取方法的思想如下。首先计算点云的协方差矩阵,提取点云的特征值和特征向量。可以考虑得到的特征向量是归一化的,并且总是基于右手坐标系(主特征向量表示x轴,副特征向量表示z轴)。下一步是迭代过程。在每次迭代中旋转主特征向量。旋转顺序总是相同的,并且是围绕其他特征向量执行的,这就提供了点云旋转的不变性。从此,我们将把这个旋转的主矢量称为当前轴。
在这里插入图片描述对每一当前轴的转动惯量进行计算。此外,当前轴也用于偏心计算。因此,将当前矢量作为平面的法向量,并将输入云投影到其上。然后计算得到的投影偏心量。
在这里插入图片描述
实现的类还提供了获取AABB和OBB的方法。沿着特征向量,将有向包围盒计算为AABB。

实现代码

首先,本教程需要点云。这是截屏上显示的。接下来你需要做的是在任何你喜欢的编辑器中创建一个文件moment_of_inertia.cpp,并在其中复制以下代码:

#include <vector>
#include <thread>#include <pcl/features/moment_of_inertia_estimation.h>
#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>
#include <pcl/visualization/cloud_viewer.h>using namespace std::chrono_literals;int main (int argc, char** argv)
{if (argc != 2)return (0);pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ> ());if (pcl::io::loadPCDFile (argv[1], *cloud) == -1)return (-1);pcl::MomentOfInertiaEstimation <pcl::PointXYZ> feature_extractor;feature_extractor.setInputCloud (cloud);feature_extractor.compute ();std::vector <float> moment_of_inertia;std::vector <float> eccentricity;pcl::PointXYZ min_point_AABB;pcl::PointXYZ max_point_AABB;pcl::PointXYZ min_point_OBB;pcl::PointXYZ max_point_OBB;pcl::PointXYZ position_OBB;Eigen::Matrix3f rotational_matrix_OBB;float major_value, middle_value, minor_value;Eigen::Vector3f major_vector, middle_vector, minor_vector;Eigen::Vector3f mass_center;feature_extractor.getMomentOfInertia (moment_of_inertia);feature_extractor.getEccentricity (eccentricity);feature_extractor.getAABB (min_point_AABB, max_point_AABB);feature_extractor.getOBB (min_point_OBB, max_point_OBB, position_OBB, rotational_matrix_OBB);feature_extractor.getEigenValues (major_value, middle_value, minor_value);feature_extractor.getEigenVectors (major_vector, middle_vector, minor_vector);feature_extractor.getMassCenter (mass_center);pcl::visualization::PCLVisualizer::Ptr viewer (new pcl::visualization::PCLVisualizer ("3D Viewer"));viewer->setBackgroundColor (0, 0, 0);viewer->addCoordinateSystem (1.0);viewer->initCameraParameters ();viewer->addPointCloud<pcl::PointXYZ> (cloud, "sample cloud");viewer->addCube (min_point_AABB.x, max_point_AABB.x, min_point_AABB.y, max_point_AABB.y, min_point_AABB.z, max_point_AABB.z, 1.0, 1.0, 0.0, "AABB");viewer->setShapeRenderingProperties(pcl::visualization::PCL_VISUALIZER_REPRESENTATION, pcl::visualization::PCL_VISUALIZER_REPRESENTATION_WIREFRAME, "AABB");Eigen::Vector3f position (position_OBB.x, position_OBB.y, position_OBB.z);Eigen::Quaternionf quat (rotational_matrix_OBB);viewer->addCube (position, quat, max_point_OBB.x - min_point_OBB.x, max_point_OBB.y - min_point_OBB.y, max_point_OBB.z - min_point_OBB.z, "OBB");viewer->setShapeRenderingProperties(pcl::visualization::PCL_VISUALIZER_REPRESENTATION, pcl::visualization::PCL_VISUALIZER_REPRESENTATION_WIREFRAME, "OBB");pcl::PointXYZ center (mass_center (0), mass_center (1), mass_center (2));pcl::PointXYZ x_axis (major_vector (0) + mass_center (0), major_vector (1) + mass_center (1), major_vector (2) + mass_center (2));pcl::PointXYZ y_axis (middle_vector (0) + mass_center (0), middle_vector (1) + mass_center (1), middle_vector (2) + mass_center (2));pcl::PointXYZ z_axis (minor_vector (0) + mass_center (0), minor_vector (1) + mass_center (1), minor_vector (2) + mass_center (2));viewer->addLine (center, x_axis, 1.0f, 0.0f, 0.0f, "major eigen vector");viewer->addLine (center, y_axis, 0.0f, 1.0f, 0.0f, "middle eigen vector");viewer->addLine (center, z_axis, 0.0f, 0.0f, 1.0f, "minor eigen vector");while(!viewer->wasStopped()){viewer->spinOnce (100);std::this_thread::sleep_for(100ms);}return (0);
}

解释

现在让我们研究一下这段代码的目的。头几行将被省略,因为它们很明显。

  pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ> ());if (pcl::io::loadPCDFile (argv[1], *cloud) == -1)return (-1);

这些行只是从.pcd文件加载点云。

  pcl::MomentOfInertiaEstimation <pcl::PointXYZ> feature_extractor;feature_extractor.setInputCloud (cloud);feature_extractor.compute ();

下面是pcl:: momentofinertiaestimate类实例化的地方。之后,我们立即设置输入点云并启动计算过程,就这么简单。

  std::vector <float> moment_of_inertia;std::vector <float> eccentricity;pcl::PointXYZ min_point_AABB;pcl::PointXYZ max_point_AABB;pcl::PointXYZ min_point_OBB;pcl::PointXYZ max_point_OBB;pcl::PointXYZ position_OBB;Eigen::Matrix3f rotational_matrix_OBB;float major_value, middle_value, minor_value;Eigen::Vector3f major_vector, middle_vector, minor_vector;Eigen::Vector3f mass_center;

声明存储描述符和边界框所需的所有必要变量。

  feature_extractor.getMomentOfInertia (moment_of_inertia);feature_extractor.getEccentricity (eccentricity);feature_extractor.getAABB (min_point_AABB, max_point_AABB);feature_extractor.getOBB (min_point_OBB, max_point_OBB, position_OBB, rotational_matrix_OBB);feature_extractor.getEigenValues (major_value, middle_value, minor_value);feature_extractor.getEigenVectors (major_vector, middle_vector, minor_vector);feature_extractor.getMassCenter (mass_center);

这些行显示了如何访问计算过的描述符和其他特性。

  pcl::visualization::PCLVisualizer::Ptr viewer (new pcl::visualization::PCLVisualizer ("3D Viewer"));viewer->setBackgroundColor (0, 0, 0);viewer->addCoordinateSystem (1.0);viewer->initCameraParameters ();viewer->addPointCloud<pcl::PointXYZ> (cloud, "sample cloud");viewer->addCube (min_point_AABB.x, max_point_AABB.x, min_point_AABB.y, max_point_AABB.y, min_point_AABB.z, max_point_AABB.z, 1.0, 1.0, 0.0, "AABB");viewer->setShapeRenderingProperties(pcl::visualization::PCL_VISUALIZER_REPRESENTATION, pcl::visualization::PCL_VISUALIZER_REPRESENTATION_WIREFRAME, "AABB");

这些行简单地创建了用于结果可视化的PCLVisualizer类的实例。在这里,我们还添加了点云和AABB以实现可视化。我们设置了呈现属性,以便使用线框显示立方体,因为默认情况下使用的是实体立方体。

  Eigen::Vector3f position (position_OBB.x, position_OBB.y, position_OBB.z);Eigen::Quaternionf quat (rotational_matrix_OBB);viewer->addCube (position, quat, max_point_OBB.x - min_point_OBB.x, max_point_OBB.y - min_point_OBB.y, max_point_OBB.z - min_point_OBB.z, "OBB");viewer->setShapeRenderingProperties(pcl::visualization::PCL_VISUALIZER_REPRESENTATION, pcl::visualization::PCL_VISUALIZER_REPRESENTATION_WIREFRAME, "OBB");

OBB的可视化稍微复杂一些。这里我们从旋转矩阵中创建一个四元数,设置OBBs的位置并将其传递给可视化器。

  pcl::PointXYZ center (mass_center (0), mass_center (1), mass_center (2));pcl::PointXYZ x_axis (major_vector (0) + mass_center (0), major_vector (1) + mass_center (1), major_vector (2) + mass_center (2));pcl::PointXYZ y_axis (middle_vector (0) + mass_center (0), middle_vector (1) + mass_center (1), middle_vector (2) + mass_center (2));pcl::PointXYZ z_axis (minor_vector (0) + mass_center (0), minor_vector (1) + mass_center (1), minor_vector (2) + mass_center (2));viewer->addLine (center, x_axis, 1.0f, 0.0f, 0.0f, "major eigen vector");viewer->addLine (center, y_axis, 0.0f, 1.0f, 0.0f, "middle eigen vector");viewer->addLine (center, z_axis, 0.0f, 0.0f, 1.0f, "minor eigen vector");

这些代码负责特征向量的可视化。剩下的几行代码只是启动可视化过程。

编译和运行程序

在CMakeLists.txt文件中添加以下行:

cmake_minimum_required(VERSION 2.8 FATAL_ERROR)project(moment_of_inertia)find_package(PCL 1.8 REQUIRED)include_directories(${PCL_INCLUDE_DIRS})
link_directories(${PCL_LIBRARY_DIRS})
add_definitions(${PCL_DEFINITIONS})add_executable (moment_of_inertia moment_of_inertia.cpp)
target_link_libraries (moment_of_inertia ${PCL_LIBRARIES})

完成可执行文件后,就可以运行它了,只需做:

$ ./moment_of_inertia lamppost.pcd

您应该会看到类似于此图像的内容。这里AABB是黄色的,OBB是红色的。你也可以看到特征向量。
在这里插入图片描述

这篇关于【译】PCL官网教程翻译(20):惯性矩和偏心距描述符 - Moment of inertia and eccentricity based descriptors的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1126982

相关文章

springboot简单集成Security配置的教程

《springboot简单集成Security配置的教程》:本文主要介绍springboot简单集成Security配置的教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录集成Security安全框架引入依赖编写配置类WebSecurityConfig(自定义资源权限规则

MySQL Workbench 安装教程(保姆级)

《MySQLWorkbench安装教程(保姆级)》MySQLWorkbench是一款强大的数据库设计和管理工具,本文主要介绍了MySQLWorkbench安装教程,文中通过图文介绍的非常详细,对大... 目录前言:详细步骤:一、检查安装的数据库版本二、在官网下载对应的mysql Workbench版本,要是

通过Docker Compose部署MySQL的详细教程

《通过DockerCompose部署MySQL的详细教程》DockerCompose作为Docker官方的容器编排工具,为MySQL数据库部署带来了显著优势,下面小编就来为大家详细介绍一... 目录一、docker Compose 部署 mysql 的优势二、环境准备与基础配置2.1 项目目录结构2.2 基

Linux安装MySQL的教程

《Linux安装MySQL的教程》:本文主要介绍Linux安装MySQL的教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux安装mysql1.Mysql官网2.我的存放路径3.解压mysql文件到当前目录4.重命名一下5.创建mysql用户组和用户并修

最新Spring Security实战教程之Spring Security安全框架指南

《最新SpringSecurity实战教程之SpringSecurity安全框架指南》SpringSecurity是Spring生态系统中的核心组件,提供认证、授权和防护机制,以保护应用免受各种安... 目录前言什么是Spring Security?同类框架对比Spring Security典型应用场景传统

最新Spring Security实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)

《最新SpringSecurity实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)》本章节介绍了如何通过SpringSecurity实现从配置自定义登录页面、表单登录处理逻辑的配置,并简单模拟... 目录前言改造准备开始登录页改造自定义用户名密码登陆成功失败跳转问题自定义登出前后端分离适配方案结语前言

Centos环境下Tomcat虚拟主机配置详细教程

《Centos环境下Tomcat虚拟主机配置详细教程》这篇文章主要讲的是在CentOS系统上,如何一步步配置Tomcat的虚拟主机,内容很简单,从目录准备到配置文件修改,再到重启和测试,手把手带你搞定... 目录1. 准备虚拟主机的目录和内容创建目录添加测试文件2. 修改 Tomcat 的 server.X

Python中的输入输出与注释教程

《Python中的输入输出与注释教程》:本文主要介绍Python中的输入输出与注释教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、print 输出功能1. 基础用法2. 多参数输出3. 格式化输出4. 换行控制二、input 输入功能1. 基础用法2. 类

Java导入、导出excel用法步骤保姆级教程(附封装好的工具类)

《Java导入、导出excel用法步骤保姆级教程(附封装好的工具类)》:本文主要介绍Java导入、导出excel的相关资料,讲解了使用Java和ApachePOI库将数据导出为Excel文件,包括... 目录前言一、引入Apache POI依赖二、用法&步骤2.1 创建Excel的元素2.3 样式和字体2.

Spring Boot拦截器Interceptor与过滤器Filter详细教程(示例详解)

《SpringBoot拦截器Interceptor与过滤器Filter详细教程(示例详解)》本文详细介绍了SpringBoot中的拦截器(Interceptor)和过滤器(Filter),包括它们的... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)详细教程1. 概述1