【译】PCL官网教程翻译(20):惯性矩和偏心距描述符 - Moment of inertia and eccentricity based descriptors

本文主要是介绍【译】PCL官网教程翻译(20):惯性矩和偏心距描述符 - Moment of inertia and eccentricity based descriptors,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

英文原网页查看。

基于惯性矩和偏心距的描述符

在本教程中,我们将学习如何使用pcl::MomentOfInertiaEstimation类来获得基于偏心量和惯性矩的描述符。这个类还允许提取轴对齐和有向的点云包围框。但是请记住,提取的OBB可能并不是最小的边界框。

理论基础

特征提取方法的思想如下。首先计算点云的协方差矩阵,提取点云的特征值和特征向量。可以考虑得到的特征向量是归一化的,并且总是基于右手坐标系(主特征向量表示x轴,副特征向量表示z轴)。下一步是迭代过程。在每次迭代中旋转主特征向量。旋转顺序总是相同的,并且是围绕其他特征向量执行的,这就提供了点云旋转的不变性。从此,我们将把这个旋转的主矢量称为当前轴。
在这里插入图片描述对每一当前轴的转动惯量进行计算。此外,当前轴也用于偏心计算。因此,将当前矢量作为平面的法向量,并将输入云投影到其上。然后计算得到的投影偏心量。
在这里插入图片描述
实现的类还提供了获取AABB和OBB的方法。沿着特征向量,将有向包围盒计算为AABB。

实现代码

首先,本教程需要点云。这是截屏上显示的。接下来你需要做的是在任何你喜欢的编辑器中创建一个文件moment_of_inertia.cpp,并在其中复制以下代码:

#include <vector>
#include <thread>#include <pcl/features/moment_of_inertia_estimation.h>
#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>
#include <pcl/visualization/cloud_viewer.h>using namespace std::chrono_literals;int main (int argc, char** argv)
{if (argc != 2)return (0);pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ> ());if (pcl::io::loadPCDFile (argv[1], *cloud) == -1)return (-1);pcl::MomentOfInertiaEstimation <pcl::PointXYZ> feature_extractor;feature_extractor.setInputCloud (cloud);feature_extractor.compute ();std::vector <float> moment_of_inertia;std::vector <float> eccentricity;pcl::PointXYZ min_point_AABB;pcl::PointXYZ max_point_AABB;pcl::PointXYZ min_point_OBB;pcl::PointXYZ max_point_OBB;pcl::PointXYZ position_OBB;Eigen::Matrix3f rotational_matrix_OBB;float major_value, middle_value, minor_value;Eigen::Vector3f major_vector, middle_vector, minor_vector;Eigen::Vector3f mass_center;feature_extractor.getMomentOfInertia (moment_of_inertia);feature_extractor.getEccentricity (eccentricity);feature_extractor.getAABB (min_point_AABB, max_point_AABB);feature_extractor.getOBB (min_point_OBB, max_point_OBB, position_OBB, rotational_matrix_OBB);feature_extractor.getEigenValues (major_value, middle_value, minor_value);feature_extractor.getEigenVectors (major_vector, middle_vector, minor_vector);feature_extractor.getMassCenter (mass_center);pcl::visualization::PCLVisualizer::Ptr viewer (new pcl::visualization::PCLVisualizer ("3D Viewer"));viewer->setBackgroundColor (0, 0, 0);viewer->addCoordinateSystem (1.0);viewer->initCameraParameters ();viewer->addPointCloud<pcl::PointXYZ> (cloud, "sample cloud");viewer->addCube (min_point_AABB.x, max_point_AABB.x, min_point_AABB.y, max_point_AABB.y, min_point_AABB.z, max_point_AABB.z, 1.0, 1.0, 0.0, "AABB");viewer->setShapeRenderingProperties(pcl::visualization::PCL_VISUALIZER_REPRESENTATION, pcl::visualization::PCL_VISUALIZER_REPRESENTATION_WIREFRAME, "AABB");Eigen::Vector3f position (position_OBB.x, position_OBB.y, position_OBB.z);Eigen::Quaternionf quat (rotational_matrix_OBB);viewer->addCube (position, quat, max_point_OBB.x - min_point_OBB.x, max_point_OBB.y - min_point_OBB.y, max_point_OBB.z - min_point_OBB.z, "OBB");viewer->setShapeRenderingProperties(pcl::visualization::PCL_VISUALIZER_REPRESENTATION, pcl::visualization::PCL_VISUALIZER_REPRESENTATION_WIREFRAME, "OBB");pcl::PointXYZ center (mass_center (0), mass_center (1), mass_center (2));pcl::PointXYZ x_axis (major_vector (0) + mass_center (0), major_vector (1) + mass_center (1), major_vector (2) + mass_center (2));pcl::PointXYZ y_axis (middle_vector (0) + mass_center (0), middle_vector (1) + mass_center (1), middle_vector (2) + mass_center (2));pcl::PointXYZ z_axis (minor_vector (0) + mass_center (0), minor_vector (1) + mass_center (1), minor_vector (2) + mass_center (2));viewer->addLine (center, x_axis, 1.0f, 0.0f, 0.0f, "major eigen vector");viewer->addLine (center, y_axis, 0.0f, 1.0f, 0.0f, "middle eigen vector");viewer->addLine (center, z_axis, 0.0f, 0.0f, 1.0f, "minor eigen vector");while(!viewer->wasStopped()){viewer->spinOnce (100);std::this_thread::sleep_for(100ms);}return (0);
}

解释

现在让我们研究一下这段代码的目的。头几行将被省略,因为它们很明显。

  pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ> ());if (pcl::io::loadPCDFile (argv[1], *cloud) == -1)return (-1);

这些行只是从.pcd文件加载点云。

  pcl::MomentOfInertiaEstimation <pcl::PointXYZ> feature_extractor;feature_extractor.setInputCloud (cloud);feature_extractor.compute ();

下面是pcl:: momentofinertiaestimate类实例化的地方。之后,我们立即设置输入点云并启动计算过程,就这么简单。

  std::vector <float> moment_of_inertia;std::vector <float> eccentricity;pcl::PointXYZ min_point_AABB;pcl::PointXYZ max_point_AABB;pcl::PointXYZ min_point_OBB;pcl::PointXYZ max_point_OBB;pcl::PointXYZ position_OBB;Eigen::Matrix3f rotational_matrix_OBB;float major_value, middle_value, minor_value;Eigen::Vector3f major_vector, middle_vector, minor_vector;Eigen::Vector3f mass_center;

声明存储描述符和边界框所需的所有必要变量。

  feature_extractor.getMomentOfInertia (moment_of_inertia);feature_extractor.getEccentricity (eccentricity);feature_extractor.getAABB (min_point_AABB, max_point_AABB);feature_extractor.getOBB (min_point_OBB, max_point_OBB, position_OBB, rotational_matrix_OBB);feature_extractor.getEigenValues (major_value, middle_value, minor_value);feature_extractor.getEigenVectors (major_vector, middle_vector, minor_vector);feature_extractor.getMassCenter (mass_center);

这些行显示了如何访问计算过的描述符和其他特性。

  pcl::visualization::PCLVisualizer::Ptr viewer (new pcl::visualization::PCLVisualizer ("3D Viewer"));viewer->setBackgroundColor (0, 0, 0);viewer->addCoordinateSystem (1.0);viewer->initCameraParameters ();viewer->addPointCloud<pcl::PointXYZ> (cloud, "sample cloud");viewer->addCube (min_point_AABB.x, max_point_AABB.x, min_point_AABB.y, max_point_AABB.y, min_point_AABB.z, max_point_AABB.z, 1.0, 1.0, 0.0, "AABB");viewer->setShapeRenderingProperties(pcl::visualization::PCL_VISUALIZER_REPRESENTATION, pcl::visualization::PCL_VISUALIZER_REPRESENTATION_WIREFRAME, "AABB");

这些行简单地创建了用于结果可视化的PCLVisualizer类的实例。在这里,我们还添加了点云和AABB以实现可视化。我们设置了呈现属性,以便使用线框显示立方体,因为默认情况下使用的是实体立方体。

  Eigen::Vector3f position (position_OBB.x, position_OBB.y, position_OBB.z);Eigen::Quaternionf quat (rotational_matrix_OBB);viewer->addCube (position, quat, max_point_OBB.x - min_point_OBB.x, max_point_OBB.y - min_point_OBB.y, max_point_OBB.z - min_point_OBB.z, "OBB");viewer->setShapeRenderingProperties(pcl::visualization::PCL_VISUALIZER_REPRESENTATION, pcl::visualization::PCL_VISUALIZER_REPRESENTATION_WIREFRAME, "OBB");

OBB的可视化稍微复杂一些。这里我们从旋转矩阵中创建一个四元数,设置OBBs的位置并将其传递给可视化器。

  pcl::PointXYZ center (mass_center (0), mass_center (1), mass_center (2));pcl::PointXYZ x_axis (major_vector (0) + mass_center (0), major_vector (1) + mass_center (1), major_vector (2) + mass_center (2));pcl::PointXYZ y_axis (middle_vector (0) + mass_center (0), middle_vector (1) + mass_center (1), middle_vector (2) + mass_center (2));pcl::PointXYZ z_axis (minor_vector (0) + mass_center (0), minor_vector (1) + mass_center (1), minor_vector (2) + mass_center (2));viewer->addLine (center, x_axis, 1.0f, 0.0f, 0.0f, "major eigen vector");viewer->addLine (center, y_axis, 0.0f, 1.0f, 0.0f, "middle eigen vector");viewer->addLine (center, z_axis, 0.0f, 0.0f, 1.0f, "minor eigen vector");

这些代码负责特征向量的可视化。剩下的几行代码只是启动可视化过程。

编译和运行程序

在CMakeLists.txt文件中添加以下行:

cmake_minimum_required(VERSION 2.8 FATAL_ERROR)project(moment_of_inertia)find_package(PCL 1.8 REQUIRED)include_directories(${PCL_INCLUDE_DIRS})
link_directories(${PCL_LIBRARY_DIRS})
add_definitions(${PCL_DEFINITIONS})add_executable (moment_of_inertia moment_of_inertia.cpp)
target_link_libraries (moment_of_inertia ${PCL_LIBRARIES})

完成可执行文件后,就可以运行它了,只需做:

$ ./moment_of_inertia lamppost.pcd

您应该会看到类似于此图像的内容。这里AABB是黄色的,OBB是红色的。你也可以看到特征向量。
在这里插入图片描述

这篇关于【译】PCL官网教程翻译(20):惯性矩和偏心距描述符 - Moment of inertia and eccentricity based descriptors的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1126982

相关文章

使用Docker构建Python Flask程序的详细教程

《使用Docker构建PythonFlask程序的详细教程》在当今的软件开发领域,容器化技术正变得越来越流行,而Docker无疑是其中的佼佼者,本文我们就来聊聊如何使用Docker构建一个简单的Py... 目录引言一、准备工作二、创建 Flask 应用程序三、创建 dockerfile四、构建 Docker

C++20管道运算符的实现示例

《C++20管道运算符的实现示例》本文简要介绍C++20管道运算符的使用与实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录标准库的管道运算符使用自己实现类似的管道运算符我们不打算介绍太多,因为它实际属于c++20最为重要的

Visual Studio 2022 编译C++20代码的图文步骤

《VisualStudio2022编译C++20代码的图文步骤》在VisualStudio中启用C++20import功能,需设置语言标准为ISOC++20,开启扫描源查找模块依赖及实验性标... 默认创建Visual Studio桌面控制台项目代码包含C++20的import方法。右键项目的属性:

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

Java Web实现类似Excel表格锁定功能实战教程

《JavaWeb实现类似Excel表格锁定功能实战教程》本文将详细介绍通过创建特定div元素并利用CSS布局和JavaScript事件监听来实现类似Excel的锁定行和列效果的方法,感兴趣的朋友跟随... 目录1. 模拟Excel表格锁定功能2. 创建3个div元素实现表格锁定2.1 div元素布局设计2.

SpringBoot连接Redis集群教程

《SpringBoot连接Redis集群教程》:本文主要介绍SpringBoot连接Redis集群教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 依赖2. 修改配置文件3. 创建RedisClusterConfig4. 测试总结1. 依赖 <de

Nexus安装和启动的实现教程

《Nexus安装和启动的实现教程》:本文主要介绍Nexus安装和启动的实现教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、Nexus下载二、Nexus安装和启动三、关闭Nexus总结一、Nexus下载官方下载链接:DownloadWindows系统根

CnPlugin是PL/SQL Developer工具插件使用教程

《CnPlugin是PL/SQLDeveloper工具插件使用教程》:本文主要介绍CnPlugin是PL/SQLDeveloper工具插件使用教程,具有很好的参考价值,希望对大家有所帮助,如有错... 目录PL/SQL Developer工具插件使用安装拷贝文件配置总结PL/SQL Developer工具插

Java中的登录技术保姆级详细教程

《Java中的登录技术保姆级详细教程》:本文主要介绍Java中登录技术保姆级详细教程的相关资料,在Java中我们可以使用各种技术和框架来实现这些功能,文中通过代码介绍的非常详细,需要的朋友可以参考... 目录1.登录思路2.登录标记1.会话技术2.会话跟踪1.Cookie技术2.Session技术3.令牌技

Python使用Code2flow将代码转化为流程图的操作教程

《Python使用Code2flow将代码转化为流程图的操作教程》Code2flow是一款开源工具,能够将代码自动转换为流程图,该工具对于代码审查、调试和理解大型代码库非常有用,在这篇博客中,我们将深... 目录引言1nVflRA、为什么选择 Code2flow?2、安装 Code2flow3、基本功能演示