【译】PCL官网教程翻译(16):点特征直方图(PFH)描述符 -Point Feature Histograms (PFH) descriptors

本文主要是介绍【译】PCL官网教程翻译(16):点特征直方图(PFH)描述符 -Point Feature Histograms (PFH) descriptors,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

英文原网页查看。

点特征直方图(PFH)描述符

就点特征表示而言,表面法线和曲率估计是在表示特定点周围的基本的几何形状方面。虽然计算速度极快,也很容易,但是它们不能捕捉太多的细节,因为它们只能用很少的值来近似一个点的k邻域的几何形状。直接的结果是,大多数场景将包含许多具有相同或非常相似的特征值的点,从而减少了它们的信息特征。
本教程介绍了一组为简单起见而创建的3D特征描述符PFH(点特征直方图),介绍了它们的理论优势,并从PCL的角度讨论了实现细节。作为先决条件,请先阅读PointCloud教程中的估算表面法线,因为PFH签名既依赖于xyz 3D数据,也依赖于表面法线。

理论基础

PFH公式的目标是编码一个点的k邻域几何特性,使用值的多维直方图来概括点周围的平均曲率。这种高维超空间为特征表示提供了一个信息签名,它不受下垫面的6D位姿的影响,并且能够很好地处理邻域中存在的不同采样密度或噪声水平。
点特征直方图表示是基于k邻域内的点与其估计的表面法线之间的关系。简而言之,它试图通过考虑估计法线方向之间的所有相互作用,尽可能地捕捉采样的表面变化。由此得到的超空间依赖于每一点表面法向估计的质量
下图呈现出一种影响的地区图PFH计算为一个查询点 p q p_q pq,标有红色和放置在一个圆半径为r的(在3D球体),和所有k临近点(点距离小于半径r)完全互联。最终的PFH描述符计算为邻域内所有对点之间关系的直方图,因此计算复杂度为 O ( k 2 ) O(k^2) O(k2)
在这里插入图片描述
为了计算两个点 p i p_i pi p j p_j pj之间的相对差以及它们的相关法线 n i n_i ni n j n_j nj,我们在其中一个点定义了一个固定的坐标系(见下图)。
u = n s u = n_s u=ns
v = u × ( p t − p s ) ∥ p t − p s ∥ 2 v = u\times\frac{(p_t - p_s)}{\Vert p_t - p_s\Vert_2} v=u×ptps2(ptps)
w = u × v w = u\times v w=u×v
在这里插入图片描述
利用上面的uvw向量,两个法线 n s n_s ns n t n_t nt的差可以表示为一组角特征,如下:
α = v ⋅ n t \alpha = v\cdot n_t α=vnt
ϕ = u ⋅ ( p t − p s ) d \phi = u\cdot \frac{(p_t - p_s)}{d} ϕ=ud(ptps)
θ = a r c t a n ( w ⋅ n t , u ⋅ n t ) \theta = arctan(w\cdot n_t, u\cdot n_t) θ=arctan(wnt,unt)
其中 d d d p s p_s ps, p t p_t pt两点之间的欧式距离, d = ∥ p t − p s ∥ 2 d={\|\boldsymbol{p}_t-\boldsymbol{p}_s\|}_2 d=ptps2。对k邻域内的每对点计算四联体 ⟨ α 、 ϕ 、 θ 、 d ⟩ \langle\alpha、\phi、\theta、d\rangle αϕθd,从而将两点及其法线的12个值(xyz和法线信息)减少到4。
若要估算一对点的PFH四联体,请使用:

computePairFeatures (const Eigen::Vector4f &p1, const Eigen::Vector4f &n1,const Eigen::Vector4f &p2, const Eigen::Vector4f &n2,float &f1, float &f2, float &f3, float &f4);

有关更多细节,请参阅API文档。
为了为查询点创建最终的PFH表示,将所有四联体的集合绑定到一个直方图中。绑定流程将每个特性的值范围划分为b个子区间,并计算每个子区间内出现的次数。由于上述四个特征中有三个是法线夹角的度量,所以它们的值很容易在三角圆上归一化为相同的区间。绑定的一个例子是将每个特征区间划分为相同数量的相等部分,从而在完全相关的空间中创建一个 b 4 b^4 b4个箱子的直方图。在这个空间中,直方图增量对应于一个点,它的所有4个特性都有一定的值。下图展示了点不同点的点特征直方图表示示例。
在某些情况下,第四个特征d对于2.5D数据集(通常在机器人中获得)不具有极端意义,因为相邻点之间的距离从视点开始增加。因此,对于局部点密度影响特征维数的扫描,省略d被证明是有益的。
在这里插入图片描述

注意
有关更多信息和数学推导,包括对不同表面几何形状的PFH签名的分析,请参见Rusu论文

估计PFH特性

点特征直方图作为pcl_features库的一部分在PCL中实现。
默认PFH实现使用5面元细分(例如,每个的四个特性值将会在其取值区间划分这么多),但不包括距离(像前面解释的那样,尽管computePairFeatures方法可以调用用户获得的距离,如果需要的话),结果在一个125字节的数组 ( 5 3 ) (5 ^ 3) (53)浮点值。这些存储在pcl::PFHSignature125 point类型中。
下面的代码片段将为输入数据集中的所有点估计一组PFH特性。

#include <pcl/point_types.h>
#include <pcl/features/pfh.h>{pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ>);pcl::PointCloud<pcl::Normal>::Ptr normals (new pcl::PointCloud<pcl::Normal> ());... read, pass in or create a point cloud with normals ...... (note: you can create a single PointCloud<PointNormal> if you want) ...// 创建PFH估计类,并将输入数据集+法线传递给它pcl::PFHEstimation<pcl::PointXYZ, pcl::Normal, pcl::PFHSignature125> pfh;pfh.setInputCloud (cloud);pfh.setInputNormals (normals);// 或者,如果cloud是tpe PointNormal,则执行pfh.setInputNormals(点云);// 创建一个空的kdtree表示,并将其传递给PFH估计对象。// 它的内容将根据给定的输入数据集填充到对象中(因为没有其他搜索表面)。pcl::search::KdTree<pcl::PointXYZ>::Ptr tree (new pcl::search::KdTree<pcl::PointXYZ> ());//pcl::KdTreeFLANN<pcl::PointXYZ>::Ptr tree (new pcl::KdTreeFLANN<pcl::PointXYZ> ()); -- older call for PCL 1.5-pfh.setSearchMethod (tree);// 输出数据集pcl::PointCloud<pcl::PFHSignature125>::Ptr pfhs (new pcl::PointCloud<pcl::PFHSignature125> ());// 使用半径为5cm的球体中的所有邻点// 重点:这里使用的半径必须大于用于估计表面法线的半径!!pfh.setRadiusSearch (0.05);// 计算特性pfh.compute (*pfhs);// pfhs->points.size () 应该和cloud->points.size ()一致
}

来自pfhestimate类的实际计算调用在内部什么也不做,但是:

对于云中的每一点p
1. 得到p的最近邻
2. 对于每一对邻居,计算三个角值
3.将所有结果放入一个输出直方图中

若要从k邻域计算单个PFH表示,请使用:

computePointPFHSignature (const pcl::PointCloud<PointInT> &cloud,const pcl::PointCloud<PointNT> &normals,const std::vector<int> &indices,int nr_split,Eigen::VectorXf &pfh_histogram);

点云包含输入点,点云法线是输入点云法线(可以等于点云如果PointInT = PointNT = PointNormal),索引代表点云的k近邻,nr_split是细分的数量为每个特性的直方图过程使用间隔,和pfh_histogram输出结果直方图一样,是一个浮点值数组。

注意
由于效率的原因,PFHEstimation中的计算方法不检查法线是否包含NaN或无穷大值。将这些值传递给compute()将导致未定义的输出。建议至少在设计加工链或设置参数时检查法线。这可以通过在调用compute()之前插入以下代码来实现:

for (int i = 0; i < normals->points.size(); i++)
{if (!pcl::isFinite<pcl::Normal>(normals->points[i])){PCL_WARN("normals[%d] is not finite\n", i);}
}

在编译代码中,应设置预处理步骤和参数,使法线是有限的或产生错误。

这篇关于【译】PCL官网教程翻译(16):点特征直方图(PFH)描述符 -Point Feature Histograms (PFH) descriptors的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1126978

相关文章

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者

论文翻译:arxiv-2024 Benchmark Data Contamination of Large Language Models: A Survey

Benchmark Data Contamination of Large Language Models: A Survey https://arxiv.org/abs/2406.04244 大规模语言模型的基准数据污染:一项综述 文章目录 大规模语言模型的基准数据污染:一项综述摘要1 引言 摘要 大规模语言模型(LLMs),如GPT-4、Claude-3和Gemini的快

沁恒CH32在MounRiver Studio上环境配置以及使用详细教程

目录 1.  RISC-V简介 2.  CPU架构现状 3.  MounRiver Studio软件下载 4.  MounRiver Studio软件安装 5.  MounRiver Studio软件介绍 6.  创建工程 7.  编译代码 1.  RISC-V简介         RISC就是精简指令集计算机(Reduced Instruction SetCom

前端技术(七)——less 教程

一、less简介 1. less是什么? less是一种动态样式语言,属于css预处理器的范畴,它扩展了CSS语言,增加了变量、Mixin、函数等特性,使CSS 更易维护和扩展LESS 既可以在 客户端 上运行 ,也可以借助Node.js在服务端运行。 less的中文官网:https://lesscss.cn/ 2. less编译工具 koala 官网 http://koala-app.

【Shiro】Shiro 的学习教程(三)之 SpringBoot 集成 Shiro

目录 1、环境准备2、引入 Shiro3、实现认证、退出3.1、使用死数据实现3.2、引入数据库,添加注册功能后端代码前端代码 3.3、MD5、Salt 的认证流程 4.、实现授权4.1、基于角色授权4.2、基于资源授权 5、引入缓存5.1、EhCache 实现缓存5.2、集成 Redis 实现 Shiro 缓存 1、环境准备 新建一个 SpringBoot 工程,引入依赖:

【JavaScript】LeetCode:16-20

文章目录 16 无重复字符的最长字串17 找到字符串中所有字母异位词18 和为K的子数组19 滑动窗口最大值20 最小覆盖字串 16 无重复字符的最长字串 滑动窗口 + 哈希表这里用哈希集合Set()实现。左指针i,右指针j,从头遍历数组,若j指针指向的元素不在set中,则加入该元素,否则更新结果res,删除集合中i指针指向的元素,进入下一轮循环。 /*** @param

OpenCV结构分析与形状描述符(11)椭圆拟合函数fitEllipse()的使用

操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C++11 算法描述 围绕一组2D点拟合一个椭圆。 该函数计算出一个椭圆,该椭圆在最小二乘意义上最好地拟合一组2D点。它返回一个内切椭圆的旋转矩形。使用了由[90]描述的第一个算法。开发者应该注意,由于数据点靠近包含的 Mat 元素的边界,返回的椭圆/旋转矩形数据

论文翻译:ICLR-2024 PROVING TEST SET CONTAMINATION IN BLACK BOX LANGUAGE MODELS

PROVING TEST SET CONTAMINATION IN BLACK BOX LANGUAGE MODELS https://openreview.net/forum?id=KS8mIvetg2 验证测试集污染在黑盒语言模型中 文章目录 验证测试集污染在黑盒语言模型中摘要1 引言 摘要 大型语言模型是在大量互联网数据上训练的,这引发了人们的担忧和猜测,即它们可能已