【译】PCL官网教程翻译(16):点特征直方图(PFH)描述符 -Point Feature Histograms (PFH) descriptors

本文主要是介绍【译】PCL官网教程翻译(16):点特征直方图(PFH)描述符 -Point Feature Histograms (PFH) descriptors,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

英文原网页查看。

点特征直方图(PFH)描述符

就点特征表示而言,表面法线和曲率估计是在表示特定点周围的基本的几何形状方面。虽然计算速度极快,也很容易,但是它们不能捕捉太多的细节,因为它们只能用很少的值来近似一个点的k邻域的几何形状。直接的结果是,大多数场景将包含许多具有相同或非常相似的特征值的点,从而减少了它们的信息特征。
本教程介绍了一组为简单起见而创建的3D特征描述符PFH(点特征直方图),介绍了它们的理论优势,并从PCL的角度讨论了实现细节。作为先决条件,请先阅读PointCloud教程中的估算表面法线,因为PFH签名既依赖于xyz 3D数据,也依赖于表面法线。

理论基础

PFH公式的目标是编码一个点的k邻域几何特性,使用值的多维直方图来概括点周围的平均曲率。这种高维超空间为特征表示提供了一个信息签名,它不受下垫面的6D位姿的影响,并且能够很好地处理邻域中存在的不同采样密度或噪声水平。
点特征直方图表示是基于k邻域内的点与其估计的表面法线之间的关系。简而言之,它试图通过考虑估计法线方向之间的所有相互作用,尽可能地捕捉采样的表面变化。由此得到的超空间依赖于每一点表面法向估计的质量
下图呈现出一种影响的地区图PFH计算为一个查询点 p q p_q pq,标有红色和放置在一个圆半径为r的(在3D球体),和所有k临近点(点距离小于半径r)完全互联。最终的PFH描述符计算为邻域内所有对点之间关系的直方图,因此计算复杂度为 O ( k 2 ) O(k^2) O(k2)
在这里插入图片描述
为了计算两个点 p i p_i pi p j p_j pj之间的相对差以及它们的相关法线 n i n_i ni n j n_j nj,我们在其中一个点定义了一个固定的坐标系(见下图)。
u = n s u = n_s u=ns
v = u × ( p t − p s ) ∥ p t − p s ∥ 2 v = u\times\frac{(p_t - p_s)}{\Vert p_t - p_s\Vert_2} v=u×ptps2(ptps)
w = u × v w = u\times v w=u×v
在这里插入图片描述
利用上面的uvw向量,两个法线 n s n_s ns n t n_t nt的差可以表示为一组角特征,如下:
α = v ⋅ n t \alpha = v\cdot n_t α=vnt
ϕ = u ⋅ ( p t − p s ) d \phi = u\cdot \frac{(p_t - p_s)}{d} ϕ=ud(ptps)
θ = a r c t a n ( w ⋅ n t , u ⋅ n t ) \theta = arctan(w\cdot n_t, u\cdot n_t) θ=arctan(wnt,unt)
其中 d d d p s p_s ps, p t p_t pt两点之间的欧式距离, d = ∥ p t − p s ∥ 2 d={\|\boldsymbol{p}_t-\boldsymbol{p}_s\|}_2 d=ptps2。对k邻域内的每对点计算四联体 ⟨ α 、 ϕ 、 θ 、 d ⟩ \langle\alpha、\phi、\theta、d\rangle αϕθd,从而将两点及其法线的12个值(xyz和法线信息)减少到4。
若要估算一对点的PFH四联体,请使用:

computePairFeatures (const Eigen::Vector4f &p1, const Eigen::Vector4f &n1,const Eigen::Vector4f &p2, const Eigen::Vector4f &n2,float &f1, float &f2, float &f3, float &f4);

有关更多细节,请参阅API文档。
为了为查询点创建最终的PFH表示,将所有四联体的集合绑定到一个直方图中。绑定流程将每个特性的值范围划分为b个子区间,并计算每个子区间内出现的次数。由于上述四个特征中有三个是法线夹角的度量,所以它们的值很容易在三角圆上归一化为相同的区间。绑定的一个例子是将每个特征区间划分为相同数量的相等部分,从而在完全相关的空间中创建一个 b 4 b^4 b4个箱子的直方图。在这个空间中,直方图增量对应于一个点,它的所有4个特性都有一定的值。下图展示了点不同点的点特征直方图表示示例。
在某些情况下,第四个特征d对于2.5D数据集(通常在机器人中获得)不具有极端意义,因为相邻点之间的距离从视点开始增加。因此,对于局部点密度影响特征维数的扫描,省略d被证明是有益的。
在这里插入图片描述

注意
有关更多信息和数学推导,包括对不同表面几何形状的PFH签名的分析,请参见Rusu论文

估计PFH特性

点特征直方图作为pcl_features库的一部分在PCL中实现。
默认PFH实现使用5面元细分(例如,每个的四个特性值将会在其取值区间划分这么多),但不包括距离(像前面解释的那样,尽管computePairFeatures方法可以调用用户获得的距离,如果需要的话),结果在一个125字节的数组 ( 5 3 ) (5 ^ 3) (53)浮点值。这些存储在pcl::PFHSignature125 point类型中。
下面的代码片段将为输入数据集中的所有点估计一组PFH特性。

#include <pcl/point_types.h>
#include <pcl/features/pfh.h>{pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ>);pcl::PointCloud<pcl::Normal>::Ptr normals (new pcl::PointCloud<pcl::Normal> ());... read, pass in or create a point cloud with normals ...... (note: you can create a single PointCloud<PointNormal> if you want) ...// 创建PFH估计类,并将输入数据集+法线传递给它pcl::PFHEstimation<pcl::PointXYZ, pcl::Normal, pcl::PFHSignature125> pfh;pfh.setInputCloud (cloud);pfh.setInputNormals (normals);// 或者,如果cloud是tpe PointNormal,则执行pfh.setInputNormals(点云);// 创建一个空的kdtree表示,并将其传递给PFH估计对象。// 它的内容将根据给定的输入数据集填充到对象中(因为没有其他搜索表面)。pcl::search::KdTree<pcl::PointXYZ>::Ptr tree (new pcl::search::KdTree<pcl::PointXYZ> ());//pcl::KdTreeFLANN<pcl::PointXYZ>::Ptr tree (new pcl::KdTreeFLANN<pcl::PointXYZ> ()); -- older call for PCL 1.5-pfh.setSearchMethod (tree);// 输出数据集pcl::PointCloud<pcl::PFHSignature125>::Ptr pfhs (new pcl::PointCloud<pcl::PFHSignature125> ());// 使用半径为5cm的球体中的所有邻点// 重点:这里使用的半径必须大于用于估计表面法线的半径!!pfh.setRadiusSearch (0.05);// 计算特性pfh.compute (*pfhs);// pfhs->points.size () 应该和cloud->points.size ()一致
}

来自pfhestimate类的实际计算调用在内部什么也不做,但是:

对于云中的每一点p
1. 得到p的最近邻
2. 对于每一对邻居,计算三个角值
3.将所有结果放入一个输出直方图中

若要从k邻域计算单个PFH表示,请使用:

computePointPFHSignature (const pcl::PointCloud<PointInT> &cloud,const pcl::PointCloud<PointNT> &normals,const std::vector<int> &indices,int nr_split,Eigen::VectorXf &pfh_histogram);

点云包含输入点,点云法线是输入点云法线(可以等于点云如果PointInT = PointNT = PointNormal),索引代表点云的k近邻,nr_split是细分的数量为每个特性的直方图过程使用间隔,和pfh_histogram输出结果直方图一样,是一个浮点值数组。

注意
由于效率的原因,PFHEstimation中的计算方法不检查法线是否包含NaN或无穷大值。将这些值传递给compute()将导致未定义的输出。建议至少在设计加工链或设置参数时检查法线。这可以通过在调用compute()之前插入以下代码来实现:

for (int i = 0; i < normals->points.size(); i++)
{if (!pcl::isFinite<pcl::Normal>(normals->points[i])){PCL_WARN("normals[%d] is not finite\n", i);}
}

在编译代码中,应设置预处理步骤和参数,使法线是有限的或产生错误。

这篇关于【译】PCL官网教程翻译(16):点特征直方图(PFH)描述符 -Point Feature Histograms (PFH) descriptors的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1126978

相关文章

龙蜥操作系统Anolis OS-23.x安装配置图解教程(保姆级)

《龙蜥操作系统AnolisOS-23.x安装配置图解教程(保姆级)》:本文主要介绍了安装和配置AnolisOS23.2系统,包括分区、软件选择、设置root密码、网络配置、主机名设置和禁用SELinux的步骤,详细内容请阅读本文,希望能对你有所帮助... ‌AnolisOS‌是由阿里云推出的开源操作系统,旨

PyTorch使用教程之Tensor包详解

《PyTorch使用教程之Tensor包详解》这篇文章介绍了PyTorch中的张量(Tensor)数据结构,包括张量的数据类型、初始化、常用操作、属性等,张量是PyTorch框架中的核心数据结构,支持... 目录1、张量Tensor2、数据类型3、初始化(构造张量)4、常用操作5、常用属性5.1 存储(st

Java操作PDF文件实现签订电子合同详细教程

《Java操作PDF文件实现签订电子合同详细教程》:本文主要介绍如何在PDF中加入电子签章与电子签名的过程,包括编写Word文件、生成PDF、为PDF格式做表单、为表单赋值、生成文档以及上传到OB... 目录前言:先看效果:1.编写word文件1.2然后生成PDF格式进行保存1.3我这里是将文件保存到本地后

windows系统下shutdown重启关机命令超详细教程

《windows系统下shutdown重启关机命令超详细教程》shutdown命令是一个强大的工具,允许你通过命令行快速完成关机、重启或注销操作,本文将为你详细解析shutdown命令的使用方法,并提... 目录一、shutdown 命令简介二、shutdown 命令的基本用法三、远程关机与重启四、实际应用

python库fire使用教程

《python库fire使用教程》本文主要介绍了python库fire使用教程,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1.简介2. fire安装3. fire使用示例1.简介目前python命令行解析库用过的有:ar

LinuxMint怎么安装? Linux Mint22下载安装图文教程

《LinuxMint怎么安装?LinuxMint22下载安装图文教程》LinuxMint22发布以后,有很多新功能,很多朋友想要下载并安装,该怎么操作呢?下面我们就来看看详细安装指南... linux Mint 是一款基于 Ubuntu 的流行发行版,凭借其现代、精致、易于使用的特性,深受小伙伴们所喜爱。对

使用Nginx来共享文件的详细教程

《使用Nginx来共享文件的详细教程》有时我们想共享电脑上的某些文件,一个比较方便的做法是,开一个HTTP服务,指向文件所在的目录,这次我们用nginx来实现这个需求,本文将通过代码示例一步步教你使用... 在本教程中,我们将向您展示如何使用开源 Web 服务器 Nginx 设置文件共享服务器步骤 0 —

Golang使用minio替代文件系统的实战教程

《Golang使用minio替代文件系统的实战教程》本文讨论项目开发中直接文件系统的限制或不足,接着介绍Minio对象存储的优势,同时给出Golang的实际示例代码,包括初始化客户端、读取minio对... 目录文件系统 vs Minio文件系统不足:对象存储:miniogolang连接Minio配置Min

手把手教你idea中创建一个javaweb(webapp)项目详细图文教程

《手把手教你idea中创建一个javaweb(webapp)项目详细图文教程》:本文主要介绍如何使用IntelliJIDEA创建一个Maven项目,并配置Tomcat服务器进行运行,过程包括创建... 1.启动idea2.创建项目模板点击项目-新建项目-选择maven,显示如下页面输入项目名称,选择

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt