PCL-基于超体聚类的LCCP点云分割

2024-08-22 10:44

本文主要是介绍PCL-基于超体聚类的LCCP点云分割,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 一、LCCP方法
  • 二、代码实现
  • 三、实验结果
  • 四、总结
  • 五、相关链接

一、LCCP方法

LCCP指的是Local Convexity-Constrained Patch,即局部凸约束补丁的意思。LCCP方法的基本思想是在图像中找到局部区域内的凸结构,并将这些结构用于分割图像或提取特征。这种方法可以帮助识别图像中的凸物体,并对它们进行分割。LCCP方法通常结合了空间和法线信息,以提高图像分割的准确性和稳定性。

LCCP算法大致可以分成两个部分:1.基于超体聚类的过分割。2.在超体聚类的基础上再聚类。
该方法流程图如下:
在这里插入图片描述

二、代码实现

#include <iostream>
#include <pcl/ModelCoefficients.h>
#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>
#include <pcl/sample_consensus/method_types.h>
#include <pcl/sample_consensus/model_types.h>
#include <pcl/segmentation/sac_segmentation.h>
#include <pcl/visualization/cloud_viewer.h>
#include <pcl/filters/extract_indices.h>
#include <boost/thread/thread.hpp>
#include <stdlib.h>
#include <cmath>
#include <limits.h>
#include <boost/format.hpp>
#include <pcl/console/parse.h>
#include <pcl/io/pcd_io.h>
#include <pcl/visualization/pcl_visualizer.h>
#include <pcl/visualization/point_cloud_color_handlers.h>
#include <pcl/filters/passthrough.h>
#include <pcl/segmentation/supervoxel_clustering.h>
#include <pcl/segmentation/lccp_segmentation.h>
#include <vtkPolyLine.h> 
#include <pcl/point_cloud.h>
#include <pcl/segmentation/supervoxel_clustering.h>
#include <pcl/visualization/pcl_visualizer.h>using namespace std;
typedef pcl::PointXYZ PointT;
typedef pcl::LCCPSegmentation<PointT>::SupervoxelAdjacencyList SuperVoxelAdjacencyList;
//邻接线条可视化
void addSupervoxelConnectionsToViewer(pcl::PointXYZRGBA& supervoxel_center, pcl::PointCloud<pcl::PointXYZRGBA>& adjacent_supervoxel_centers,std::string supervoxel_name, pcl::visualization::PCLVisualizer::Ptr& viewer)
{vtkSmartPointer<vtkPoints> points = vtkSmartPointer<vtkPoints>::New();vtkSmartPointer<vtkCellArray> cells = vtkSmartPointer<vtkCellArray>::New();vtkSmartPointer<vtkPolyLine> polyLine = vtkSmartPointer<vtkPolyLine>::New();for (auto adjacent_itr = adjacent_supervoxel_centers.begin(); adjacent_itr != adjacent_supervoxel_centers.end(); ++adjacent_itr){points->InsertNextPoint(supervoxel_center.data);points->InsertNextPoint(adjacent_itr->data);}vtkSmartPointer<vtkPolyData> polyData = vtkSmartPointer<vtkPolyData>::New();polyData->SetPoints(points);polyLine->GetPointIds()->SetNumberOfIds(points->GetNumberOfPoints());for (unsigned int i = 0; i < points->GetNumberOfPoints(); i++)polyLine->GetPointIds()->SetId(i, i);cells->InsertNextCell(polyLine);polyData->SetLines(cells);viewer->addModelFromPolyData(polyData, supervoxel_name);
}int main(int argc, char** argv)
{pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>);pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered(new pcl::PointCloud<pcl::PointXYZ>);pcl::PCDReader reader;// 读入点云PCD文件reader.read("E:****.pcd", *cloud);cout << "Point cloud data: " << cloud->points.size() << " points" << endl;pcl::ModelCoefficients::Ptr coefficients(new pcl::ModelCoefficients);pcl::PointIndices::Ptr inliers(new pcl::PointIndices);// 创建分割对象pcl::SACSegmentation<pcl::PointXYZ> seg;// 可选择配置,设置模型系数需要优化seg.setOptimizeCoefficients(true);// 必须配置,设置分割的模型类型、所用随机参数估计方法seg.setModelType(pcl::SACMODEL_PLANE);seg.setMethodType(pcl::SAC_RANSAC);seg.setDistanceThreshold(0.02);// 距离阈值 单位m。距离阈值决定了点被认为是局内点时必须满足的条件//seg.setDistanceThreshold(0.15);// 距离阈值 单位m。距离阈值决定了点被认为是局内点时必须满足的条件//距离阈值表示点到估计模型的距离最大值。seg.setInputCloud(cloud);//输入点云seg.segment(*inliers, *coefficients);//实现分割,并存储分割结果到点集合inliers及存储平面模型系数coefficientsif (inliers->indices.size() == 0){PCL_ERROR("Could not estimate a planar model for the given dataset.");return (-1);}//***********************************************************************//-----------输出平面模型的系数 a,b,c,d-----------cout << "Model coefficients: " << coefficients->values[0] << " "<< coefficients->values[1] << " "<< coefficients->values[2] << " "<< coefficients->values[3] << endl;cout << "Model inliers: " << inliers->indices.size() << endl;//***********************************************************************// 提取地面pcl::ExtractIndices<pcl::PointXYZ> extract;extract.setInputCloud(cloud);extract.setIndices(inliers);extract.filter(*cloud_filtered);cout << "Ground cloud after filtering: " << endl;cout << *cloud_filtered << std::endl;pcl::PCDWriter writer;writer.write<pcl::PointXYZ>("3dpoints_ground.pcd", *cloud_filtered, false);// 提取除地面外的物体extract.setNegative(true);extract.filter(*cloud_filtered);cout << "Object cloud after filtering: " << endl;cout << *cloud_filtered << endl;//writer.write<pcl::PointXYZ>(".pcd", *cloud_filtered, false);// 点云可视化boost::shared_ptr<pcl::visualization::PCLVisualizer>viewer0(new pcl::visualization::PCLVisualizer("显示点云"));//左边窗口显示输入的点云,右边的窗口显示分割后的点云int v1(0), v2(0);viewer0->createViewPort(0, 0, 0.5, 1, v1);viewer0->createViewPort(0.5, 0, 1, 1, v2);viewer0->setBackgroundColor(0, 0, 0, v1);viewer0->setBackgroundColor(0.3, 0.3, 0.3, v2);pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ> color_in(cloud, 255, 0, 0);viewer0->addPointCloud<pcl::PointXYZ>(cloud, color_in, "cloud_in", v1);viewer0->setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 1, "cloud_in", v1);viewer0->addPointCloud<pcl::PointXYZ>(cloud_filtered, "cloud_out", v2);viewer0->setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_COLOR, 0, 255, 0, "cloud_out", v2);viewer0->setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 1, "cloud_out", v2);while (!viewer0->wasStopped()){viewer0->spinOnce(100);boost::this_thread::sleep(boost::posix_time::microseconds(1000));}//***********************************************************************//超体聚类 float voxel_resolution = 0.01f;    // 设置体素大小,该设置决定底层八叉树的叶子尺寸float seed_resolution = 0.15f;    // 设置种子大小,该设置决定超体素的大小float color_importance = 0.0f;    // 设置颜色在距离测试公式中的权重,即颜色影响超体素分割结果的比重。 真实点云都是一个颜色,所以这个参数无作用float spatial_importance = 0.9f;  // 设置空间距离在距离测试公式中的权重,较高的值会构建非常规则的超体素,较低的值产生的体素会按照法线float normal_importance = 4.0f;   // 设置法向量的权重,即表面法向量影响超体素分割结果的比重。bool use_single_cam_transform = false;bool use_supervoxel_refinement = false;unsigned int k_factor = 0;//voxel_resolution is the resolution (in meters) of voxels used、seed_resolution is the average size (in meters) of resulting supervoxels  pcl::SupervoxelClustering<PointT> super(voxel_resolution, seed_resolution);super.setUseSingleCameraTransform(use_single_cam_transform);super.setInputCloud(cloud_filtered); //cloud_filteredsuper.setColorImportance(color_importance);//Set the importance of spatial distance for supervoxels.super.setSpatialImportance(spatial_importance);//Set the importance of scalar normal product for supervoxels. super.setNormalImportance(normal_importance);std::map<uint32_t, pcl::Supervoxel<PointT>::Ptr> supervoxel_clusters;super.extract(supervoxel_clusters);std::multimap<uint32_t, uint32_t> supervoxel_adjacency;super.getSupervoxelAdjacency(supervoxel_adjacency);pcl::PointCloud<pcl::PointNormal>::Ptr sv_centroid_normal_cloud = pcl::SupervoxelClustering<PointT>::makeSupervoxelNormalCloud(supervoxel_clusters);cout << "超体素分割的体素个数为:" << supervoxel_clusters.size() << endl;// 获取点云对应的超体素分割标签pcl::PointCloud<pcl::PointXYZL>::Ptr supervoxel_cloud = super.getLabeledCloud();pcl::visualization::PCLVisualizer::Ptr viewer1(new pcl::visualization::PCLVisualizer("VCCS"));viewer1->setWindowName("超体素分割");viewer1->addPointCloud(supervoxel_cloud, "超体素分割");viewer1->setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 1, "超体素分割");viewer1->setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_OPACITY, 0.5, "超体素分割");//-----------------------------------------获得体素点云的邻接单元----------------------------------------------multimap<uint32_t, uint32_t>SupervoxelAdjacency;super.getSupervoxelAdjacency(SupervoxelAdjacency);for (auto label_itr = SupervoxelAdjacency.cbegin(); label_itr != SupervoxelAdjacency.cend();){uint32_t super_label = label_itr->first;//获取体素单元的标签pcl::Supervoxel<pcl::PointXYZ>::Ptr super_cloud = supervoxel_clusters.at(super_label);//把对应标签内的点云、体素质心、以及质心对应的法向量提取出来pcl::PointCloud<pcl::PointXYZRGBA> adjacent_supervoxel_centers;for (auto adjacent_itr = SupervoxelAdjacency.equal_range(super_label).first; adjacent_itr != SupervoxelAdjacency.equal_range(super_label).second; ++adjacent_itr){pcl::Supervoxel<pcl::PointXYZ>::Ptr neighbor_supervoxel = supervoxel_clusters.at(adjacent_itr->second);adjacent_supervoxel_centers.push_back(neighbor_supervoxel->centroid_);}std::stringstream ss;ss << "supervoxel_" << super_label;addSupervoxelConnectionsToViewer(super_cloud->centroid_, adjacent_supervoxel_centers, ss.str(), viewer1);label_itr = SupervoxelAdjacency.upper_bound(super_label);}// 等待直到可视化窗口关闭while (!viewer1->wasStopped()){viewer1->spinOnce(100);boost::this_thread::sleep(boost::posix_time::microseconds(1000));}//return 0;//***********************************************************************//LCCP分割float concavity_tolerance_threshold = 10;float smoothness_threshold = 0.8;uint32_t min_segment_size = 0;bool use_extended_convexity = false;bool use_sanity_criterion = false;pcl::LCCPSegmentation<PointT> lccp;lccp.setConcavityToleranceThreshold(concavity_tolerance_threshold);//CC效验beta值lccp.setSmoothnessCheck(true, voxel_resolution, seed_resolution, smoothness_threshold);lccp.setKFactor(k_factor);               //CC效验的k邻点lccp.setInputSupervoxels(supervoxel_clusters, supervoxel_adjacency);lccp.setMinSegmentSize(min_segment_size);//最小分割尺寸lccp.segment();pcl::PointCloud<pcl::PointXYZL>::Ptr sv_labeled_cloud = super.getLabeledCloud();pcl::PointCloud<pcl::PointXYZL>::Ptr lccp_labeled_cloud = sv_labeled_cloud->makeShared();lccp.relabelCloud(*lccp_labeled_cloud);SuperVoxelAdjacencyList sv_adjacency_list;lccp.getSVAdjacencyList(sv_adjacency_list);pcl::visualization::PCLVisualizer::Ptr viewer2(new pcl::visualization::PCLVisualizer("LCCP超体素分割"));viewer2->setWindowName("LCCP超体素分割");viewer2->addPointCloud(lccp_labeled_cloud, "LCCP超体素分割");viewer2->setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 1, "LCCP超体素分割");viewer2->setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_OPACITY, 0.5, "LCCP超体素分割");// 等待直到可视化窗口关闭while (!viewer2->wasStopped()){viewer2->spinOnce(100);boost::this_thread::sleep(boost::posix_time::microseconds(1000));}return 0;}

三、实验结果

原数据
原数据
去除地面后
在这里插入图片描述
超体聚类过分割
在这里插入图片描述
LCCP分割
在这里插入图片描述

四、总结

从实验结果来看,LCCP算法在相似物体场景分割方面有着较好的表现,对于颜色类似但棱角分明的物体可使用该算法。

五、相关链接

[1]PCL-低层次视觉-点云分割(超体聚类)
[2]PCL_使用LCCP进行点云分割

这篇关于PCL-基于超体聚类的LCCP点云分割的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1096046

相关文章

使用Python将长图片分割为若干张小图片

《使用Python将长图片分割为若干张小图片》这篇文章主要为大家详细介绍了如何使用Python将长图片分割为若干张小图片,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. python需求的任务2. Python代码的实现3. 代码修改的位置4. 运行结果1. Python需求

C#中字符串分割的多种方式

《C#中字符串分割的多种方式》在C#编程语言中,字符串处理是日常开发中不可或缺的一部分,字符串分割是处理文本数据时常用的操作,它允许我们将一个长字符串分解成多个子字符串,本文给大家介绍了C#中字符串分... 目录1. 使用 string.Split2. 使用正则表达式 (Regex.Split)3. 使用

2、PF-Net点云补全

2、PF-Net 点云补全 PF-Net论文链接:PF-Net PF-Net (Point Fractal Network for 3D Point Cloud Completion)是一种专门为三维点云补全设计的深度学习模型。点云补全实际上和图片补全是一个逻辑,都是采用GAN模型的思想来进行补全,在图片补全中,将部分像素点删除并且标记,然后卷积特征提取预测、判别器判别,来训练模型,生成的像

线性代数|机器学习-P36在图中找聚类

文章目录 1. 常见图结构2. 谱聚类 感觉后面几节课的内容跨越太大,需要补充太多的知识点,教授讲得内容跨越较大,一般一节课的内容是书本上的一章节内容,所以看视频比较吃力,需要先预习课本内容后才能够很好的理解教授讲解的知识点。 1. 常见图结构 假设我们有如下图结构: Adjacency Matrix:行和列表示的是节点的位置,A[i,j]表示的第 i 个节点和第 j 个

Spark MLlib模型训练—聚类算法 PIC(Power Iteration Clustering)

Spark MLlib模型训练—聚类算法 PIC(Power Iteration Clustering) Power Iteration Clustering (PIC) 是一种基于图的聚类算法,用于在大规模数据集上进行高效的社区检测。PIC 算法的核心思想是通过迭代图的幂运算来发现数据中的潜在簇。该算法适用于处理大规模图数据,特别是在社交网络分析、推荐系统和生物信息学等领域具有广泛应用。Spa

SAM2POINT:以zero-shot且快速的方式将任何 3D 视频分割为视频

摘要 我们介绍 SAM2POINT,这是一种采用 Segment Anything Model 2 (SAM 2) 进行零样本和快速 3D 分割的初步探索。 SAM2POINT 将任何 3D 数据解释为一系列多向视频,并利用 SAM 2 进行 3D 空间分割,无需进一步训练或 2D-3D 投影。 我们的框架支持各种提示类型,包括 3D 点、框和掩模,并且可以泛化到不同的场景,例如 3D 对象、室

用Pytho解决分类问题_DBSCAN聚类算法模板

一:DBSCAN聚类算法的介绍 DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一种基于密度的聚类算法,DBSCAN算法的核心思想是将具有足够高密度的区域划分为簇,并能够在具有噪声的空间数据库中发现任意形状的簇。 DBSCAN算法的主要特点包括: 1. 基于密度的聚类:DBSCAN算法通过识别被低密

【LVI-SAM】激光雷达点云处理特征提取LIO-SAM 之FeatureExtraction实现细节

激光雷达点云处理特征提取LIO-SAM 之FeatureExtraction实现细节 1. 特征提取实现过程总结1.0 特征提取过程小结1.1 类 `FeatureExtraction` 的整体结构与作用1.2 详细特征提取的过程1. 平滑度计算(`calculateSmoothness()`)2. 标记遮挡点(`markOccludedPoints()`)3. 特征提取(`extractF

Spark2.x 入门: KMeans 聚类算法

一 KMeans简介 KMeans 是一个迭代求解的聚类算法,其属于 划分(Partitioning) 型的聚类方法,即首先创建K个划分,然后迭代地将样本从一个划分转移到另一个划分来改善最终聚类的质量。 ML包下的KMeans方法位于org.apache.spark.ml.clustering包下,其过程大致如下: 1.根据给定的k值,选取k个样本点作为初始划分中心;2.计算所有样本点到每

基于YOLO8的图片实例分割系统

文章目录 在线体验快速开始一、项目介绍篇1.1 YOLO81.2 ultralytics1.3 模块介绍1.3.1 scan_task1.3.2 scan_taskflow.py1.3.3 segment_app.py 二、核心代码介绍篇2.1 segment_app.py2.2 scan_taskflow.py 三、结语 代码资源:计算机视觉领域YOLO8技术的图片实例分割实