【LVI-SAM】激光雷达点云处理特征提取LIO-SAM 之FeatureExtraction实现细节

本文主要是介绍【LVI-SAM】激光雷达点云处理特征提取LIO-SAM 之FeatureExtraction实现细节,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

激光雷达点云处理特征提取LIO-SAM 之FeatureExtraction实现细节

    • 1. 特征提取实现过程总结
      • 1.0 特征提取过程小结
      • 1.1 类 `FeatureExtraction` 的整体结构与作用
      • 1.2 详细特征提取的过程
        • 1. 平滑度计算(`calculateSmoothness()`)
        • 2. 标记遮挡点(`markOccludedPoints()`)
        • 3. 特征提取(`extractFeatures()`)
        • 4. 发布特征点云(`publishFeatureCloud()`)
    • 2.0 特征提取数学推倒过程
    • 3.0 FeatureExtraction Code

1. 特征提取实现过程总结

这段代码实现了基于LiDAR(激光雷达)点云数据的特征提取,用于SLAM(Simultaneous Localization and Mapping)系统中的前端处理。特征提取的目的是从点云中识别出角点和平面点(面点),为后续的位姿估计和地图构建提供关键特征点。
在这里插入图片描述

1.0 特征提取过程小结

这段代码的主要目的是从LiDAR点云中提取出角点(边缘)和面点(平面),以便用于SLAM系统中。整个流程涉及:

  1. 平滑度计算:通过计算每个点的平滑度来区分平滑点和突变点。
  2. 遮挡点标记:通过深度差和像素间距来标记被遮挡的点和平行光束点。
  3. 特征提取:根据曲率值提取角点和面点,分别用于位姿估计和地图构建。
  4. 降采样和发布:通过降采样减少数据冗余,最终发布处理后的特征点云。

1.1 类 FeatureExtraction 的整体结构与作用

  • 类成员:

    • 该类通过 ROS 订阅与发布机制接收来自雷达的点云信息,并在处理后发布提取的特征。
    • 重要的类成员包括:
      • 订阅器 subLaserCloudInfo,用于接收点云数据。
      • 发布器 pubLaserCloudInfopubCornerPointspubSurfacePoints,分别用于发布处理后的点云信息、角点特征和面点特征。
      • 点云指针 extractedCloudcornerCloudsurfaceCloud,用于保存原始提取点云和特征点云。
      • cloudCurvaturecloudNeighborPickedcloudLabel,这些数组用于存储每个点的曲率、是否被选中、点的分类标签。
  • 构造函数 FeatureExtraction

    • 初始化了订阅与发布机制。
    • 调用了 initializationValue() 函数来初始化一些数据结构和参数。
  • 回调函数 laserCloudInfoHandler

    • 处理订阅到的点云信息,调用以下核心功能:calculateSmoothness()(计算每个点的平滑度)、markOccludedPoints()(标记被遮挡的点)和 extractFeatures()(特征提取),最后发布特征点云。

1.2 详细特征提取的过程

   void laserCloudInfoHandler(const lio_sam::cloud_infoConstPtr& msgIn){cloudInfo = *msgIn; // new cloud infocloudHeader = msgIn->header; // new cloud headerpcl::fromROSMsg(msgIn->cloud_deskewed, *extractedCloud); // new cloud for extractioncalculateSmoothness();markOccludedPoints();extractFeatures();publishFeatureCloud();}
1. 平滑度计算(calculateSmoothness()

这个函数计算每个点的平滑度,平滑度的定义是基于该点与其前后(5点)若干点之间的距离变化。具体步骤为:

  • for 循环:
    • 遍历从第5个点到倒数第5个点,以避免处理边界的点。
    • 计算该点前后5个点的距离差的平方和,并将该结果作为该点的曲率(即平滑度值 cloudCurvature[i])。
    • 初始化该点的 cloudNeighborPicked 为 0(表示该点还没有被处理过)和 cloudLabel 为 0(标签,初始为未分类)。
    • 将平滑度值和点的索引存储到 cloudSmoothness 中,以便后续进行排序。
2. 标记遮挡点(markOccludedPoints()

该函数标记被遮挡的点以及光束平行的点,以避免它们影响特征提取。主要逻辑如下:

  • 遮挡点:

    • 遍历每个点,比较该点与相邻点的深度差(即距离差)。
    • 如果相邻两个点的列索引差小于 10(表示在深度图像中的像素间距较小),且深度差大于 0.3,则认为是遮挡点并标记为已处理(cloudNeighborPicked[i] = 1),即这些点将不会被选为特征点。
  • 平行光束:

    • 如果前后点与当前点的距离差大于一定比例(0.02 * cloudInfo.pointRange[i]),则认为它们是平行光束,这种情况下这些点也会被标记为已处理。
3. 特征提取(extractFeatures()

这个函数的主要任务是提取角点和面点,并根据曲率值将点云进行分类。主要逻辑如下:

  • for 循环1-2:遍历激光雷达的扫描线 N_SCAN(通常是垂直方向上的扫描线数量),每条扫描线都被分为6个区域,逐个区域进行处理。
    • for 循环3-4:处理每个区域的点,将该区域按平滑度(即曲率)从大到小排序,然后分成两个部分进行处理:

      • 角点提取:
        • 从平滑度最高的点开始,如果该点没有被遮挡且曲率值大于阈值 edgeThreshold,则将其标记为角点,并加入角点点云(cornerCloud)。
        • 为了避免噪声点的影响,最多提取20个角点,并标记相邻的点为已处理,防止相邻的点被重复选取。
      • 面点提取:
        • 对于平滑度较低的点,如果曲率小于阈值 surfThreshold,则将其标记为面点,加入面点点云(surfaceCloud)。
        • 同样,通过标记相邻点来避免重复选择。
    • for 循环5:对于那些没有被标记为角点且曲率较小的点,将它们视为面点。

  • 降采样:通过 pcl::VoxelGrid 对面点进行降采样,减少点云的冗余数据,提升后续处理效率。
  # LOAM feature thresholdedgeThreshold: 1.0surfThreshold: 0.1edgeFeatureMinValidNum: 10surfFeatureMinValidNum: 100
4. 发布特征点云(publishFeatureCloud()

在提取完角点和面点之后,该函数将处理后的点云数据发布出去,用于后续的地图优化和位姿估计。

2.0 特征提取数学推倒过程

数学推倒

3.0 FeatureExtraction Code

#include "utility.h"
#include "lio_sam/cloud_info.h"struct smoothness_t{ float value;size_t ind;
};struct by_value{ bool operator()(smoothness_t const &left, smoothness_t const &right) { return left.value < right.value;}
};class FeatureExtraction : public ParamServer
{public:ros::Subscriber subLaserCloudInfo;ros::Publisher pubLaserCloudInfo;ros::Publisher pubCornerPoints;ros::Publisher pubSurfacePoints;pcl::PointCloud<PointType>::Ptr extractedCloud;pcl::PointCloud<PointType>::Ptr cornerCloud;pcl::PointCloud<PointType>::Ptr surfaceCloud;pcl::VoxelGrid<PointType> downSizeFilter;lio_sam::cloud_info cloudInfo;std_msgs::Header cloudHeader;std::vector<smoothness_t> cloudSmoothness;float *cloudCurvature;int *cloudNeighborPicked;int *cloudLabel;FeatureExtraction(){subLaserCloudInfo = nh.subscribe<lio_sam::cloud_info>("lio_sam/deskew/cloud_info", 1, &FeatureExtraction::laserCloudInfoHandler, this, ros::TransportHints().tcpNoDelay());pubLaserCloudInfo = nh.advertise<lio_sam::cloud_info> ("lio_sam/feature/cloud_info", 1);pubCornerPoints = nh.advertise<sensor_msgs::PointCloud2>("lio_sam/feature/cloud_corner", 1);pubSurfacePoints = nh.advertise<sensor_msgs::PointCloud2>("lio_sam/feature/cloud_surface", 1);initializationValue();}void initializationValue(){cloudSmoothness.resize(N_SCAN*Horizon_SCAN);downSizeFilter.setLeafSize(odometrySurfLeafSize, odometrySurfLeafSize, odometrySurfLeafSize);extractedCloud.reset(new pcl::PointCloud<PointType>());cornerCloud.reset(new pcl::PointCloud<PointType>());surfaceCloud.reset(new pcl::PointCloud<PointType>());cloudCurvature = new float[N_SCAN*Horizon_SCAN];cloudNeighborPicked = new int[N_SCAN*Horizon_SCAN];cloudLabel = new int[N_SCAN*Horizon_SCAN];}/*** @brief 计算平滑度** 遍历提取的点云数据,计算每个点的平滑度,并保存到对应数组中。** @note 对于点云中的每个点,计算其与前五个和后五个点的距离差的平方和作为平滑度。*       同时初始化相邻点被选中的状态为0,以及点的标签为0。*       将平滑度值以及对应的索引保存到cloudSmoothness数组中,以便后续排序。*/void calculateSmoothness(){int cloudSize = extractedCloud->points.size();for (int i = 5; i < cloudSize - 5; i++){float diffRange = cloudInfo.pointRange[i-5] + cloudInfo.pointRange[i-4]+ cloudInfo.pointRange[i-3] + cloudInfo.pointRange[i-2]+ cloudInfo.pointRange[i-1] - cloudInfo.pointRange[i] * 10+ cloudInfo.pointRange[i+1] + cloudInfo.pointRange[i+2]+ cloudInfo.pointRange[i+3] + cloudInfo.pointRange[i+4]+ cloudInfo.pointRange[i+5];            cloudCurvature[i] = diffRange*diffRange;//diffX * diffX + diffY * diffY + diffZ * diffZ;cloudNeighborPicked[i] = 0;cloudLabel[i] = 0;// cloudSmoothness for sortingcloudSmoothness[i].value = cloudCurvature[i];cloudSmoothness[i].ind = i;}}/*** @brief 标记被遮挡的点** 根据给定的点云信息,标记被遮挡的点和平行光束点。*/void markOccludedPoints(){int cloudSize = extractedCloud->points.size();// mark occluded points and parallel beam pointsfor (int i = 5; i < cloudSize - 6; ++i){// occluded pointsfloat depth1 = cloudInfo.pointRange[i];float depth2 = cloudInfo.pointRange[i+1];int columnDiff = std::abs(int(cloudInfo.pointColInd[i+1] - cloudInfo.pointColInd[i]));if (columnDiff < 10){// 10 pixel diff in range imageif (depth1 - depth2 > 0.3){cloudNeighborPicked[i - 5] = 1;cloudNeighborPicked[i - 4] = 1;cloudNeighborPicked[i - 3] = 1;cloudNeighborPicked[i - 2] = 1;cloudNeighborPicked[i - 1] = 1;cloudNeighborPicked[i] = 1;}else if (depth2 - depth1 > 0.3){cloudNeighborPicked[i + 1] = 1;cloudNeighborPicked[i + 2] = 1;cloudNeighborPicked[i + 3] = 1;cloudNeighborPicked[i + 4] = 1;cloudNeighborPicked[i + 5] = 1;cloudNeighborPicked[i + 6] = 1;}}// parallel beamfloat diff1 = std::abs(float(cloudInfo.pointRange[i-1] - cloudInfo.pointRange[i]));float diff2 = std::abs(float(cloudInfo.pointRange[i+1] - cloudInfo.pointRange[i]));if (diff1 > 0.02 * cloudInfo.pointRange[i] && diff2 > 0.02 * cloudInfo.pointRange[i])cloudNeighborPicked[i] = 1;}}void extractFeatures(){cornerCloud->clear();surfaceCloud->clear();pcl::PointCloud<PointType>::Ptr surfaceCloudScan(new pcl::PointCloud<PointType>());pcl::PointCloud<PointType>::Ptr surfaceCloudScanDS(new pcl::PointCloud<PointType>());for (int i = 0; i < N_SCAN; i++){surfaceCloudScan->clear();for (int j = 0; j < 6; j++){int sp = (cloudInfo.startRingIndex[i] * (6 - j) + cloudInfo.endRingIndex[i] * j) / 6;int ep = (cloudInfo.startRingIndex[i] * (5 - j) + cloudInfo.endRingIndex[i] * (j + 1)) / 6 - 1;if (sp >= ep)continue;std::sort(cloudSmoothness.begin()+sp, cloudSmoothness.begin()+ep, by_value());int largestPickedNum = 0;for (int k = ep; k >= sp; k--){int ind = cloudSmoothness[k].ind;if (cloudNeighborPicked[ind] == 0 && cloudCurvature[ind] > edgeThreshold){largestPickedNum++;if (largestPickedNum <= 20){cloudLabel[ind] = 1;cornerCloud->push_back(extractedCloud->points[ind]);} else {break;}cloudNeighborPicked[ind] = 1;for (int l = 1; l <= 5; l++){int columnDiff = std::abs(int(cloudInfo.pointColInd[ind + l] - cloudInfo.pointColInd[ind + l - 1]));if (columnDiff > 10)break;cloudNeighborPicked[ind + l] = 1;}for (int l = -1; l >= -5; l--){int columnDiff = std::abs(int(cloudInfo.pointColInd[ind + l] - cloudInfo.pointColInd[ind + l + 1]));if (columnDiff > 10)break;cloudNeighborPicked[ind + l] = 1;}}}for (int k = sp; k <= ep; k++){int ind = cloudSmoothness[k].ind;if (cloudNeighborPicked[ind] == 0 && cloudCurvature[ind] < surfThreshold){cloudLabel[ind] = -1;cloudNeighborPicked[ind] = 1;for (int l = 1; l <= 5; l++) {int columnDiff = std::abs(int(cloudInfo.pointColInd[ind + l] - cloudInfo.pointColInd[ind + l - 1]));if (columnDiff > 10)break;cloudNeighborPicked[ind + l] = 1;}for (int l = -1; l >= -5; l--) {int columnDiff = std::abs(int(cloudInfo.pointColInd[ind + l] - cloudInfo.pointColInd[ind + l + 1]));if (columnDiff > 10)break;cloudNeighborPicked[ind + l] = 1;}}}for (int k = sp; k <= ep; k++){if (cloudLabel[k] <= 0){surfaceCloudScan->push_back(extractedCloud->points[k]);}}}surfaceCloudScanDS->clear();downSizeFilter.setInputCloud(surfaceCloudScan);downSizeFilter.filter(*surfaceCloudScanDS);*surfaceCloud += *surfaceCloudScanDS;}}void freeCloudInfoMemory(){cloudInfo.startRingIndex.clear();cloudInfo.endRingIndex.clear();cloudInfo.pointColInd.clear();cloudInfo.pointRange.clear();}void publishFeatureCloud(){// free cloud info memoryfreeCloudInfoMemory();// save newly extracted featurescloudInfo.cloud_corner  = publishCloud(pubCornerPoints,  cornerCloud,  cloudHeader.stamp, lidarFrame);cloudInfo.cloud_surface = publishCloud(pubSurfacePoints, surfaceCloud, cloudHeader.stamp, lidarFrame);// publish to mapOptimizationpubLaserCloudInfo.publish(cloudInfo);}
};int main(int argc, char** argv)
{ros::init(argc, argv, "lio_sam");FeatureExtraction FE;ROS_INFO("\033[1;32m----> Feature Extraction Started.\033[0m");ros::spin();return 0;
}

这篇关于【LVI-SAM】激光雷达点云处理特征提取LIO-SAM 之FeatureExtraction实现细节的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1147560

相关文章

Java实现检查多个时间段是否有重合

《Java实现检查多个时间段是否有重合》这篇文章主要为大家详细介绍了如何使用Java实现检查多个时间段是否有重合,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录流程概述步骤详解China编程步骤1:定义时间段类步骤2:添加时间段步骤3:检查时间段是否有重合步骤4:输出结果示例代码结语作

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Java覆盖第三方jar包中的某一个类的实现方法

《Java覆盖第三方jar包中的某一个类的实现方法》在我们日常的开发中,经常需要使用第三方的jar包,有时候我们会发现第三方的jar包中的某一个类有问题,或者我们需要定制化修改其中的逻辑,那么应该如何... 目录一、需求描述二、示例描述三、操作步骤四、验证结果五、实现原理一、需求描述需求描述如下:需要在

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

前端原生js实现拖拽排课效果实例

《前端原生js实现拖拽排课效果实例》:本文主要介绍如何实现一个简单的课程表拖拽功能,通过HTML、CSS和JavaScript的配合,我们实现了课程项的拖拽、放置和显示功能,文中通过实例代码介绍的... 目录1. 效果展示2. 效果分析2.1 关键点2.2 实现方法3. 代码实现3.1 html部分3.2