本文主要是介绍【LVI-SAM】激光雷达点云处理特征提取LIO-SAM 之FeatureExtraction实现细节,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
激光雷达点云处理特征提取LIO-SAM 之FeatureExtraction实现细节
- 1. 特征提取实现过程总结
- 1.0 特征提取过程小结
- 1.1 类 `FeatureExtraction` 的整体结构与作用
- 1.2 详细特征提取的过程
- 1. 平滑度计算(`calculateSmoothness()`)
- 2. 标记遮挡点(`markOccludedPoints()`)
- 3. 特征提取(`extractFeatures()`)
- 4. 发布特征点云(`publishFeatureCloud()`)
- 2.0 特征提取数学推倒过程
- 3.0 FeatureExtraction Code
1. 特征提取实现过程总结
这段代码实现了基于LiDAR(激光雷达)点云数据的特征提取,用于SLAM(Simultaneous Localization and Mapping)系统中的前端处理。特征提取的目的是从点云中识别出角点和平面点(面点),为后续的位姿估计和地图构建提供关键特征点。
1.0 特征提取过程小结
这段代码的主要目的是从LiDAR点云中提取出角点(边缘)和面点(平面),以便用于SLAM系统中。整个流程涉及:
- 平滑度计算:通过计算每个点的平滑度来区分平滑点和突变点。
- 遮挡点标记:通过深度差和像素间距来标记被遮挡的点和平行光束点。
- 特征提取:根据曲率值提取角点和面点,分别用于位姿估计和地图构建。
- 降采样和发布:通过降采样减少数据冗余,最终发布处理后的特征点云。
1.1 类 FeatureExtraction
的整体结构与作用
-
类成员:
- 该类通过 ROS 订阅与发布机制接收来自雷达的点云信息,并在处理后发布提取的特征。
- 重要的类成员包括:
- 订阅器
subLaserCloudInfo
,用于接收点云数据。 - 发布器
pubLaserCloudInfo
、pubCornerPoints
和pubSurfacePoints
,分别用于发布处理后的点云信息、角点特征和面点特征。 - 点云指针
extractedCloud
、cornerCloud
和surfaceCloud
,用于保存原始提取点云和特征点云。 cloudCurvature
、cloudNeighborPicked
和cloudLabel
,这些数组用于存储每个点的曲率、是否被选中、点的分类标签。
- 订阅器
-
构造函数
FeatureExtraction
:- 初始化了订阅与发布机制。
- 调用了
initializationValue()
函数来初始化一些数据结构和参数。
-
回调函数
laserCloudInfoHandler
:- 处理订阅到的点云信息,调用以下核心功能:
calculateSmoothness()
(计算每个点的平滑度)、markOccludedPoints()
(标记被遮挡的点)和extractFeatures()
(特征提取),最后发布特征点云。
- 处理订阅到的点云信息,调用以下核心功能:
1.2 详细特征提取的过程
void laserCloudInfoHandler(const lio_sam::cloud_infoConstPtr& msgIn){cloudInfo = *msgIn; // new cloud infocloudHeader = msgIn->header; // new cloud headerpcl::fromROSMsg(msgIn->cloud_deskewed, *extractedCloud); // new cloud for extractioncalculateSmoothness();markOccludedPoints();extractFeatures();publishFeatureCloud();}
1. 平滑度计算(calculateSmoothness()
)
这个函数计算每个点的平滑度,平滑度的定义是基于该点与其前后(5点)若干点之间的距离变化。具体步骤为:
for
循环:- 遍历从第5个点到倒数第5个点,以避免处理边界的点。
- 计算该点前后5个点的距离差的平方和,并将该结果作为该点的曲率(即平滑度值
cloudCurvature[i]
)。 - 初始化该点的
cloudNeighborPicked
为 0(表示该点还没有被处理过)和cloudLabel
为 0(标签,初始为未分类)。 - 将平滑度值和点的索引存储到
cloudSmoothness
中,以便后续进行排序。
2. 标记遮挡点(markOccludedPoints()
)
该函数标记被遮挡的点以及光束平行的点,以避免它们影响特征提取。主要逻辑如下:
-
遮挡点:
- 遍历每个点,比较该点与相邻点的深度差(即距离差)。
- 如果相邻两个点的列索引差小于 10(表示在深度图像中的像素间距较小),且深度差大于 0.3,则认为是遮挡点并标记为已处理(
cloudNeighborPicked[i] = 1
),即这些点将不会被选为特征点。
-
平行光束:
- 如果前后点与当前点的距离差大于一定比例(
0.02 * cloudInfo.pointRange[i]
),则认为它们是平行光束,这种情况下这些点也会被标记为已处理。
- 如果前后点与当前点的距离差大于一定比例(
3. 特征提取(extractFeatures()
)
这个函数的主要任务是提取角点和面点,并根据曲率值将点云进行分类。主要逻辑如下:
- for 循环1-2:遍历激光雷达的扫描线
N_SCAN
(通常是垂直方向上的扫描线数量),每条扫描线都被分为6个区域,逐个区域进行处理。-
for 循环3-4:处理每个区域的点,将该区域按平滑度(即曲率)从大到小排序,然后分成两个部分进行处理:
- 角点提取:
- 从平滑度最高的点开始,如果该点没有被遮挡且曲率值大于阈值
edgeThreshold
,则将其标记为角点,并加入角点点云(cornerCloud
)。 - 为了避免噪声点的影响,最多提取20个角点,并标记相邻的点为已处理,防止相邻的点被重复选取。
- 从平滑度最高的点开始,如果该点没有被遮挡且曲率值大于阈值
- 面点提取:
- 对于平滑度较低的点,如果曲率小于阈值
surfThreshold
,则将其标记为面点,加入面点点云(surfaceCloud
)。 - 同样,通过标记相邻点来避免重复选择。
- 对于平滑度较低的点,如果曲率小于阈值
- 角点提取:
-
for 循环5:对于那些没有被标记为角点且曲率较小的点,将它们视为面点。
-
- 降采样:通过
pcl::VoxelGrid
对面点进行降采样,减少点云的冗余数据,提升后续处理效率。
# LOAM feature thresholdedgeThreshold: 1.0surfThreshold: 0.1edgeFeatureMinValidNum: 10surfFeatureMinValidNum: 100
4. 发布特征点云(publishFeatureCloud()
)
在提取完角点和面点之后,该函数将处理后的点云数据发布出去,用于后续的地图优化和位姿估计。
2.0 特征提取数学推倒过程
数学推倒
3.0 FeatureExtraction Code
#include "utility.h"
#include "lio_sam/cloud_info.h"struct smoothness_t{ float value;size_t ind;
};struct by_value{ bool operator()(smoothness_t const &left, smoothness_t const &right) { return left.value < right.value;}
};class FeatureExtraction : public ParamServer
{public:ros::Subscriber subLaserCloudInfo;ros::Publisher pubLaserCloudInfo;ros::Publisher pubCornerPoints;ros::Publisher pubSurfacePoints;pcl::PointCloud<PointType>::Ptr extractedCloud;pcl::PointCloud<PointType>::Ptr cornerCloud;pcl::PointCloud<PointType>::Ptr surfaceCloud;pcl::VoxelGrid<PointType> downSizeFilter;lio_sam::cloud_info cloudInfo;std_msgs::Header cloudHeader;std::vector<smoothness_t> cloudSmoothness;float *cloudCurvature;int *cloudNeighborPicked;int *cloudLabel;FeatureExtraction(){subLaserCloudInfo = nh.subscribe<lio_sam::cloud_info>("lio_sam/deskew/cloud_info", 1, &FeatureExtraction::laserCloudInfoHandler, this, ros::TransportHints().tcpNoDelay());pubLaserCloudInfo = nh.advertise<lio_sam::cloud_info> ("lio_sam/feature/cloud_info", 1);pubCornerPoints = nh.advertise<sensor_msgs::PointCloud2>("lio_sam/feature/cloud_corner", 1);pubSurfacePoints = nh.advertise<sensor_msgs::PointCloud2>("lio_sam/feature/cloud_surface", 1);initializationValue();}void initializationValue(){cloudSmoothness.resize(N_SCAN*Horizon_SCAN);downSizeFilter.setLeafSize(odometrySurfLeafSize, odometrySurfLeafSize, odometrySurfLeafSize);extractedCloud.reset(new pcl::PointCloud<PointType>());cornerCloud.reset(new pcl::PointCloud<PointType>());surfaceCloud.reset(new pcl::PointCloud<PointType>());cloudCurvature = new float[N_SCAN*Horizon_SCAN];cloudNeighborPicked = new int[N_SCAN*Horizon_SCAN];cloudLabel = new int[N_SCAN*Horizon_SCAN];}/*** @brief 计算平滑度** 遍历提取的点云数据,计算每个点的平滑度,并保存到对应数组中。** @note 对于点云中的每个点,计算其与前五个和后五个点的距离差的平方和作为平滑度。* 同时初始化相邻点被选中的状态为0,以及点的标签为0。* 将平滑度值以及对应的索引保存到cloudSmoothness数组中,以便后续排序。*/void calculateSmoothness(){int cloudSize = extractedCloud->points.size();for (int i = 5; i < cloudSize - 5; i++){float diffRange = cloudInfo.pointRange[i-5] + cloudInfo.pointRange[i-4]+ cloudInfo.pointRange[i-3] + cloudInfo.pointRange[i-2]+ cloudInfo.pointRange[i-1] - cloudInfo.pointRange[i] * 10+ cloudInfo.pointRange[i+1] + cloudInfo.pointRange[i+2]+ cloudInfo.pointRange[i+3] + cloudInfo.pointRange[i+4]+ cloudInfo.pointRange[i+5]; cloudCurvature[i] = diffRange*diffRange;//diffX * diffX + diffY * diffY + diffZ * diffZ;cloudNeighborPicked[i] = 0;cloudLabel[i] = 0;// cloudSmoothness for sortingcloudSmoothness[i].value = cloudCurvature[i];cloudSmoothness[i].ind = i;}}/*** @brief 标记被遮挡的点** 根据给定的点云信息,标记被遮挡的点和平行光束点。*/void markOccludedPoints(){int cloudSize = extractedCloud->points.size();// mark occluded points and parallel beam pointsfor (int i = 5; i < cloudSize - 6; ++i){// occluded pointsfloat depth1 = cloudInfo.pointRange[i];float depth2 = cloudInfo.pointRange[i+1];int columnDiff = std::abs(int(cloudInfo.pointColInd[i+1] - cloudInfo.pointColInd[i]));if (columnDiff < 10){// 10 pixel diff in range imageif (depth1 - depth2 > 0.3){cloudNeighborPicked[i - 5] = 1;cloudNeighborPicked[i - 4] = 1;cloudNeighborPicked[i - 3] = 1;cloudNeighborPicked[i - 2] = 1;cloudNeighborPicked[i - 1] = 1;cloudNeighborPicked[i] = 1;}else if (depth2 - depth1 > 0.3){cloudNeighborPicked[i + 1] = 1;cloudNeighborPicked[i + 2] = 1;cloudNeighborPicked[i + 3] = 1;cloudNeighborPicked[i + 4] = 1;cloudNeighborPicked[i + 5] = 1;cloudNeighborPicked[i + 6] = 1;}}// parallel beamfloat diff1 = std::abs(float(cloudInfo.pointRange[i-1] - cloudInfo.pointRange[i]));float diff2 = std::abs(float(cloudInfo.pointRange[i+1] - cloudInfo.pointRange[i]));if (diff1 > 0.02 * cloudInfo.pointRange[i] && diff2 > 0.02 * cloudInfo.pointRange[i])cloudNeighborPicked[i] = 1;}}void extractFeatures(){cornerCloud->clear();surfaceCloud->clear();pcl::PointCloud<PointType>::Ptr surfaceCloudScan(new pcl::PointCloud<PointType>());pcl::PointCloud<PointType>::Ptr surfaceCloudScanDS(new pcl::PointCloud<PointType>());for (int i = 0; i < N_SCAN; i++){surfaceCloudScan->clear();for (int j = 0; j < 6; j++){int sp = (cloudInfo.startRingIndex[i] * (6 - j) + cloudInfo.endRingIndex[i] * j) / 6;int ep = (cloudInfo.startRingIndex[i] * (5 - j) + cloudInfo.endRingIndex[i] * (j + 1)) / 6 - 1;if (sp >= ep)continue;std::sort(cloudSmoothness.begin()+sp, cloudSmoothness.begin()+ep, by_value());int largestPickedNum = 0;for (int k = ep; k >= sp; k--){int ind = cloudSmoothness[k].ind;if (cloudNeighborPicked[ind] == 0 && cloudCurvature[ind] > edgeThreshold){largestPickedNum++;if (largestPickedNum <= 20){cloudLabel[ind] = 1;cornerCloud->push_back(extractedCloud->points[ind]);} else {break;}cloudNeighborPicked[ind] = 1;for (int l = 1; l <= 5; l++){int columnDiff = std::abs(int(cloudInfo.pointColInd[ind + l] - cloudInfo.pointColInd[ind + l - 1]));if (columnDiff > 10)break;cloudNeighborPicked[ind + l] = 1;}for (int l = -1; l >= -5; l--){int columnDiff = std::abs(int(cloudInfo.pointColInd[ind + l] - cloudInfo.pointColInd[ind + l + 1]));if (columnDiff > 10)break;cloudNeighborPicked[ind + l] = 1;}}}for (int k = sp; k <= ep; k++){int ind = cloudSmoothness[k].ind;if (cloudNeighborPicked[ind] == 0 && cloudCurvature[ind] < surfThreshold){cloudLabel[ind] = -1;cloudNeighborPicked[ind] = 1;for (int l = 1; l <= 5; l++) {int columnDiff = std::abs(int(cloudInfo.pointColInd[ind + l] - cloudInfo.pointColInd[ind + l - 1]));if (columnDiff > 10)break;cloudNeighborPicked[ind + l] = 1;}for (int l = -1; l >= -5; l--) {int columnDiff = std::abs(int(cloudInfo.pointColInd[ind + l] - cloudInfo.pointColInd[ind + l + 1]));if (columnDiff > 10)break;cloudNeighborPicked[ind + l] = 1;}}}for (int k = sp; k <= ep; k++){if (cloudLabel[k] <= 0){surfaceCloudScan->push_back(extractedCloud->points[k]);}}}surfaceCloudScanDS->clear();downSizeFilter.setInputCloud(surfaceCloudScan);downSizeFilter.filter(*surfaceCloudScanDS);*surfaceCloud += *surfaceCloudScanDS;}}void freeCloudInfoMemory(){cloudInfo.startRingIndex.clear();cloudInfo.endRingIndex.clear();cloudInfo.pointColInd.clear();cloudInfo.pointRange.clear();}void publishFeatureCloud(){// free cloud info memoryfreeCloudInfoMemory();// save newly extracted featurescloudInfo.cloud_corner = publishCloud(pubCornerPoints, cornerCloud, cloudHeader.stamp, lidarFrame);cloudInfo.cloud_surface = publishCloud(pubSurfacePoints, surfaceCloud, cloudHeader.stamp, lidarFrame);// publish to mapOptimizationpubLaserCloudInfo.publish(cloudInfo);}
};int main(int argc, char** argv)
{ros::init(argc, argv, "lio_sam");FeatureExtraction FE;ROS_INFO("\033[1;32m----> Feature Extraction Started.\033[0m");ros::spin();return 0;
}
这篇关于【LVI-SAM】激光雷达点云处理特征提取LIO-SAM 之FeatureExtraction实现细节的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!