【译】PCL官网教程翻译(21):旋转投影统计(RoPs)特征 - RoPs (Rotational Projection Statistics) feature

本文主要是介绍【译】PCL官网教程翻译(21):旋转投影统计(RoPs)特征 - RoPs (Rotational Projection Statistics) feature,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

英文原网址查看

旋转投影统计(RoPs)特征

在本教程中,我们将学习如何使用pcl::ROPSEstimation类来提取点特性。在这门课中实现的特征提取方法是由Yulan Guo, Ferdous Sohel, Mohammed Bennamoun, Min Lu and Jianwei Wanalso在他们的文章《旋转投影统计用于三维局部表面描述和目标识别》中提出的。

理论基础

特征提取方法的思想如下。有了网格和一组必须计算特征的点,我们执行一些简单的步骤。首先,对于给定的兴趣点,局部表面被裁剪。局部曲面由给定支撑半径内的点和三角形组成。对给定的局部表面LRF(局部参考帧)进行了计算。LRF只是向量的一个三元组,关于如何计算这些向量的综合信息可以在本文中找到。真正重要的是利用这些向量我们可以提供点云旋转的不变性。为此,我们简单地平移局部表面的点,使感兴趣的点成为原点,然后旋转局部表面,使LRF向量与Ox、Oy和Oz轴对齐。完成这些之后,我们就开始特征提取。对于每一个坐标轴Ox, Oy, Oz执行以下步骤,我们将这些坐标轴称为当前轴:

  • 局部曲面绕当前轴旋转一定角度;
  • 将旋转后的局部曲面的点投影到XY、XZ、YZ三个平面上;
  • 对于每一个投影分布矩阵的建立,这个矩阵只是简单地显示有多少点落在每个bin上。bin的数表示矩阵维数,为算法参数,为支撑半径;
  • 计算每个分布矩阵的中心矩:M11、M12、M21、M22, E,其中E为香农熵;
  • 然后将计算值连接起来形成子特性。

我们重复这些步骤几次。迭代次数取决于给定的旋转次数。不同轴的子特性被连接起来形成最终的RoPS描述符。

代码

在本教程中,我们将使用皇后数据集中的模型。您可以选择任何其他点云,但是为了使代码工作,您需要使用三角剖分算法来获得多边形。你可在此找到建议的模型:

  • 点-包含点云
  • 索引——包含必须计算RoPs的点的索引
  • 三角形——包含多边形

接下来你需要做的是在任何你喜欢的编辑器中创建一个文件rops_features .cpp,并在其中复制以下代码:

#include <pcl/features/rops_estimation.h>
#include <pcl/io/pcd_io.h>int main (int argc, char** argv)
{if (argc != 4)return (-1);pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ> ());if (pcl::io::loadPCDFile (argv[1], *cloud) == -1)return (-1);pcl::PointIndicesPtr indices (new pcl::PointIndices);std::ifstream indices_file;indices_file.open (argv[2], std::ifstream::in);for (std::string line; std::getline (indices_file, line);){std::istringstream in (line);unsigned int index = 0;in >> index;indices->indices.push_back (index - 1);}indices_file.close ();std::vector <pcl::Vertices> triangles;std::ifstream triangles_file;triangles_file.open (argv[3], std::ifstream::in);for (std::string line; std::getline (triangles_file, line);){pcl::Vertices triangle;std::istringstream in (line);unsigned int vertex = 0;in >> vertex;triangle.vertices.push_back (vertex - 1);in >> vertex;triangle.vertices.push_back (vertex - 1);in >> vertex;triangle.vertices.push_back (vertex - 1);triangles.push_back (triangle);}float support_radius = 0.0285f;unsigned int number_of_partition_bins = 5;unsigned int number_of_rotations = 3;pcl::search::KdTree<pcl::PointXYZ>::Ptr search_method (new pcl::search::KdTree<pcl::PointXYZ>);search_method->setInputCloud (cloud);pcl::ROPSEstimation <pcl::PointXYZ, pcl::Histogram <135> > feature_estimator;feature_estimator.setSearchMethod (search_method);feature_estimator.setSearchSurface (cloud);feature_estimator.setInputCloud (cloud);feature_estimator.setIndices (indices);feature_estimator.setTriangles (triangles);feature_estimator.setRadiusSearch (support_radius);feature_estimator.setNumberOfPartitionBins (number_of_partition_bins);feature_estimator.setNumberOfRotations (number_of_rotations);feature_estimator.setSupportRadius (support_radius);pcl::PointCloud<pcl::Histogram <135> >::Ptr histograms (new pcl::PointCloud <pcl::Histogram <135> > ());feature_estimator.compute (*histograms);return (0);
}

解释

现在让我们研究一下这段代码的目的。

  pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ> ());if (pcl::io::loadPCDFile (argv[1], *cloud) == -1)return (-1);

这些行只是从.pcd文件加载点云。

  pcl::PointIndicesPtr indices (new pcl::PointIndices);std::ifstream indices_file;indices_file.open (argv[2], std::ifstream::in);for (std::string line; std::getline (indices_file, line);){std::istringstream in (line);unsigned int index = 0;in >> index;indices->indices.push_back (index - 1);}indices_file.close ();

这里加载了必须计算RoPS特性的点的索引。如果你想要的,您可以对它进行注释,并为云中的每个点计算特性。

  std::vector <pcl::Vertices> triangles;std::ifstream triangles_file;triangles_file.open (argv[3], std::ifstream::in);for (std::string line; std::getline (triangles_file, line);){pcl::Vertices triangle;std::istringstream in (line);unsigned int vertex = 0;in >> vertex;triangle.vertices.push_back (vertex - 1);in >> vertex;triangle.vertices.push_back (vertex - 1);in >> vertex;triangle.vertices.push_back (vertex - 1);triangles.push_back (triangle);}

这些行加载关于多边形的信息。如果只有点云而不是网格,可以用三角剖分的代码替换它们。

  float support_radius = 0.0285f;unsigned int number_of_partition_bins = 5;unsigned int number_of_rotations = 3;

这些代码定义了重要的算法参数:支持局部曲面裁剪的半径、用于形成分布矩阵的分区桶数和旋转数。最后一个参数影响描述符的长度。

  pcl::search::KdTree<pcl::PointXYZ>::Ptr search_method (new pcl::search::KdTree<pcl::PointXYZ>);search_method->setInputCloud (cloud);

这些行设置了算法将使用的搜索方法。

  pcl::ROPSEstimation <pcl::PointXYZ, pcl::Histogram <135> > feature_estimator;feature_estimator.setSearchMethod (search_method);feature_estimator.setSearchSurface (cloud);feature_estimator.setInputCloud (cloud);feature_estimator.setIndices (indices);feature_estimator.setTriangles (triangles);feature_estimator.setRadiusSearch (support_radius);feature_estimator.setNumberOfPartitionBins (number_of_partition_bins);feature_estimator.setNumberOfRotations (number_of_rotations);feature_estimator.setSupportRadius (support_radius);

这里是pcl::ROPSEstimation类实例化的地方。它有两个参数:

  • PointInT - 输入点的类型;
  • PointOutT - 输出点的类型。

之后,我们立即设置了用于特征计算的所有必要数据的输入。

  pcl::PointCloud<pcl::Histogram <135> >::Ptr histograms (new pcl::PointCloud <pcl::Histogram <135> > ());feature_estimator.compute (*histograms);

这里是启动计算过程的地方。

编译和运行程序

在CMakeLists.txt文件中添加以下行:

cmake_minimum_required(VERSION 2.8 FATAL_ERROR)project(rops_feature)find_package(PCL 1.8 REQUIRED)include_directories(${PCL_INCLUDE_DIRS})
link_directories(${PCL_LIBRARY_DIRS})
add_definitions(${PCL_DEFINITIONS})add_executable (rops_feature rops_feature.cpp)
target_link_libraries (rops_feature ${PCL_LIBRARIES})

完成可执行文件后,就可以运行它了。只是做的事:

$ ./rops_feature points.pcd indices.txt triangles.txt

这篇关于【译】PCL官网教程翻译(21):旋转投影统计(RoPs)特征 - RoPs (Rotational Projection Statistics) feature的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1126983

相关文章

Ubuntu固定虚拟机ip地址的方法教程

《Ubuntu固定虚拟机ip地址的方法教程》本文详细介绍了如何在Ubuntu虚拟机中固定IP地址,包括检查和编辑`/etc/apt/sources.list`文件、更新网络配置文件以及使用Networ... 1、由于虚拟机网络是桥接,所以ip地址会不停地变化,接下来我们就讲述ip如何固定 2、如果apt安

PyCharm 接入 DeepSeek最新完整教程

《PyCharm接入DeepSeek最新完整教程》文章介绍了DeepSeek-V3模型的性能提升以及如何在PyCharm中接入和使用DeepSeek进行代码开发,本文通过图文并茂的形式给大家介绍的... 目录DeepSeek-V3效果演示创建API Key在PyCharm中下载Continue插件配置Con

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

在不同系统间迁移Python程序的方法与教程

《在不同系统间迁移Python程序的方法与教程》本文介绍了几种将Windows上编写的Python程序迁移到Linux服务器上的方法,包括使用虚拟环境和依赖冻结、容器化技术(如Docker)、使用An... 目录使用虚拟环境和依赖冻结1. 创建虚拟环境2. 冻结依赖使用容器化技术(如 docker)1. 创

Spring Boot整合log4j2日志配置的详细教程

《SpringBoot整合log4j2日志配置的详细教程》:本文主要介绍SpringBoot项目中整合Log4j2日志框架的步骤和配置,包括常用日志框架的比较、配置参数介绍、Log4j2配置详解... 目录前言一、常用日志框架二、配置参数介绍1. 日志级别2. 输出形式3. 日志格式3.1 PatternL

MySQL8.2.0安装教程分享

《MySQL8.2.0安装教程分享》这篇文章详细介绍了如何在Windows系统上安装MySQL数据库软件,包括下载、安装、配置和设置环境变量的步骤... 目录mysql的安装图文1.python访问网址2javascript.点击3.进入Downloads向下滑动4.选择Community Server5.

CentOS系统Maven安装教程分享

《CentOS系统Maven安装教程分享》本文介绍了如何在CentOS系统中安装Maven,并提供了一个简单的实际应用案例,安装Maven需要先安装Java和设置环境变量,Maven可以自动管理项目的... 目录准备工作下载并安装Maven常见问题及解决方法实际应用案例总结Maven是一个流行的项目管理工具

本地私有化部署DeepSeek模型的详细教程

《本地私有化部署DeepSeek模型的详细教程》DeepSeek模型是一种强大的语言模型,本地私有化部署可以让用户在自己的环境中安全、高效地使用该模型,避免数据传输到外部带来的安全风险,同时也能根据自... 目录一、引言二、环境准备(一)硬件要求(二)软件要求(三)创建虚拟环境三、安装依赖库四、获取 Dee

MySql9.1.0安装详细教程(最新推荐)

《MySql9.1.0安装详细教程(最新推荐)》MySQL是一个流行的关系型数据库管理系统,支持多线程和多种数据库连接途径,能够处理上千万条记录的大型数据库,本文介绍MySql9.1.0安装详细教程,... 目录mysql介绍:一、下载 Mysql 安装文件二、Mysql 安装教程三、环境配置1.右击此电脑

css实现图片旋转功能

《css实现图片旋转功能》:本文主要介绍了四种CSS变换效果:图片旋转90度、水平翻转、垂直翻转,并附带了相应的代码示例,详细内容请阅读本文,希望能对你有所帮助... 一 css实现图片旋转90度.icon{ -moz-transform:rotate(-90deg); -webkit-transfo