【译】PCL官网教程翻译(21):旋转投影统计(RoPs)特征 - RoPs (Rotational Projection Statistics) feature

本文主要是介绍【译】PCL官网教程翻译(21):旋转投影统计(RoPs)特征 - RoPs (Rotational Projection Statistics) feature,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

英文原网址查看

旋转投影统计(RoPs)特征

在本教程中,我们将学习如何使用pcl::ROPSEstimation类来提取点特性。在这门课中实现的特征提取方法是由Yulan Guo, Ferdous Sohel, Mohammed Bennamoun, Min Lu and Jianwei Wanalso在他们的文章《旋转投影统计用于三维局部表面描述和目标识别》中提出的。

理论基础

特征提取方法的思想如下。有了网格和一组必须计算特征的点,我们执行一些简单的步骤。首先,对于给定的兴趣点,局部表面被裁剪。局部曲面由给定支撑半径内的点和三角形组成。对给定的局部表面LRF(局部参考帧)进行了计算。LRF只是向量的一个三元组,关于如何计算这些向量的综合信息可以在本文中找到。真正重要的是利用这些向量我们可以提供点云旋转的不变性。为此,我们简单地平移局部表面的点,使感兴趣的点成为原点,然后旋转局部表面,使LRF向量与Ox、Oy和Oz轴对齐。完成这些之后,我们就开始特征提取。对于每一个坐标轴Ox, Oy, Oz执行以下步骤,我们将这些坐标轴称为当前轴:

  • 局部曲面绕当前轴旋转一定角度;
  • 将旋转后的局部曲面的点投影到XY、XZ、YZ三个平面上;
  • 对于每一个投影分布矩阵的建立,这个矩阵只是简单地显示有多少点落在每个bin上。bin的数表示矩阵维数,为算法参数,为支撑半径;
  • 计算每个分布矩阵的中心矩:M11、M12、M21、M22, E,其中E为香农熵;
  • 然后将计算值连接起来形成子特性。

我们重复这些步骤几次。迭代次数取决于给定的旋转次数。不同轴的子特性被连接起来形成最终的RoPS描述符。

代码

在本教程中,我们将使用皇后数据集中的模型。您可以选择任何其他点云,但是为了使代码工作,您需要使用三角剖分算法来获得多边形。你可在此找到建议的模型:

  • 点-包含点云
  • 索引——包含必须计算RoPs的点的索引
  • 三角形——包含多边形

接下来你需要做的是在任何你喜欢的编辑器中创建一个文件rops_features .cpp,并在其中复制以下代码:

#include <pcl/features/rops_estimation.h>
#include <pcl/io/pcd_io.h>int main (int argc, char** argv)
{if (argc != 4)return (-1);pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ> ());if (pcl::io::loadPCDFile (argv[1], *cloud) == -1)return (-1);pcl::PointIndicesPtr indices (new pcl::PointIndices);std::ifstream indices_file;indices_file.open (argv[2], std::ifstream::in);for (std::string line; std::getline (indices_file, line);){std::istringstream in (line);unsigned int index = 0;in >> index;indices->indices.push_back (index - 1);}indices_file.close ();std::vector <pcl::Vertices> triangles;std::ifstream triangles_file;triangles_file.open (argv[3], std::ifstream::in);for (std::string line; std::getline (triangles_file, line);){pcl::Vertices triangle;std::istringstream in (line);unsigned int vertex = 0;in >> vertex;triangle.vertices.push_back (vertex - 1);in >> vertex;triangle.vertices.push_back (vertex - 1);in >> vertex;triangle.vertices.push_back (vertex - 1);triangles.push_back (triangle);}float support_radius = 0.0285f;unsigned int number_of_partition_bins = 5;unsigned int number_of_rotations = 3;pcl::search::KdTree<pcl::PointXYZ>::Ptr search_method (new pcl::search::KdTree<pcl::PointXYZ>);search_method->setInputCloud (cloud);pcl::ROPSEstimation <pcl::PointXYZ, pcl::Histogram <135> > feature_estimator;feature_estimator.setSearchMethod (search_method);feature_estimator.setSearchSurface (cloud);feature_estimator.setInputCloud (cloud);feature_estimator.setIndices (indices);feature_estimator.setTriangles (triangles);feature_estimator.setRadiusSearch (support_radius);feature_estimator.setNumberOfPartitionBins (number_of_partition_bins);feature_estimator.setNumberOfRotations (number_of_rotations);feature_estimator.setSupportRadius (support_radius);pcl::PointCloud<pcl::Histogram <135> >::Ptr histograms (new pcl::PointCloud <pcl::Histogram <135> > ());feature_estimator.compute (*histograms);return (0);
}

解释

现在让我们研究一下这段代码的目的。

  pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ> ());if (pcl::io::loadPCDFile (argv[1], *cloud) == -1)return (-1);

这些行只是从.pcd文件加载点云。

  pcl::PointIndicesPtr indices (new pcl::PointIndices);std::ifstream indices_file;indices_file.open (argv[2], std::ifstream::in);for (std::string line; std::getline (indices_file, line);){std::istringstream in (line);unsigned int index = 0;in >> index;indices->indices.push_back (index - 1);}indices_file.close ();

这里加载了必须计算RoPS特性的点的索引。如果你想要的,您可以对它进行注释,并为云中的每个点计算特性。

  std::vector <pcl::Vertices> triangles;std::ifstream triangles_file;triangles_file.open (argv[3], std::ifstream::in);for (std::string line; std::getline (triangles_file, line);){pcl::Vertices triangle;std::istringstream in (line);unsigned int vertex = 0;in >> vertex;triangle.vertices.push_back (vertex - 1);in >> vertex;triangle.vertices.push_back (vertex - 1);in >> vertex;triangle.vertices.push_back (vertex - 1);triangles.push_back (triangle);}

这些行加载关于多边形的信息。如果只有点云而不是网格,可以用三角剖分的代码替换它们。

  float support_radius = 0.0285f;unsigned int number_of_partition_bins = 5;unsigned int number_of_rotations = 3;

这些代码定义了重要的算法参数:支持局部曲面裁剪的半径、用于形成分布矩阵的分区桶数和旋转数。最后一个参数影响描述符的长度。

  pcl::search::KdTree<pcl::PointXYZ>::Ptr search_method (new pcl::search::KdTree<pcl::PointXYZ>);search_method->setInputCloud (cloud);

这些行设置了算法将使用的搜索方法。

  pcl::ROPSEstimation <pcl::PointXYZ, pcl::Histogram <135> > feature_estimator;feature_estimator.setSearchMethod (search_method);feature_estimator.setSearchSurface (cloud);feature_estimator.setInputCloud (cloud);feature_estimator.setIndices (indices);feature_estimator.setTriangles (triangles);feature_estimator.setRadiusSearch (support_radius);feature_estimator.setNumberOfPartitionBins (number_of_partition_bins);feature_estimator.setNumberOfRotations (number_of_rotations);feature_estimator.setSupportRadius (support_radius);

这里是pcl::ROPSEstimation类实例化的地方。它有两个参数:

  • PointInT - 输入点的类型;
  • PointOutT - 输出点的类型。

之后,我们立即设置了用于特征计算的所有必要数据的输入。

  pcl::PointCloud<pcl::Histogram <135> >::Ptr histograms (new pcl::PointCloud <pcl::Histogram <135> > ());feature_estimator.compute (*histograms);

这里是启动计算过程的地方。

编译和运行程序

在CMakeLists.txt文件中添加以下行:

cmake_minimum_required(VERSION 2.8 FATAL_ERROR)project(rops_feature)find_package(PCL 1.8 REQUIRED)include_directories(${PCL_INCLUDE_DIRS})
link_directories(${PCL_LIBRARY_DIRS})
add_definitions(${PCL_DEFINITIONS})add_executable (rops_feature rops_feature.cpp)
target_link_libraries (rops_feature ${PCL_LIBRARIES})

完成可执行文件后,就可以运行它了。只是做的事:

$ ./rops_feature points.pcd indices.txt triangles.txt

这篇关于【译】PCL官网教程翻译(21):旋转投影统计(RoPs)特征 - RoPs (Rotational Projection Statistics) feature的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1126983

相关文章

windos server2022的配置故障转移服务的图文教程

《windosserver2022的配置故障转移服务的图文教程》本文主要介绍了windosserver2022的配置故障转移服务的图文教程,以确保服务和应用程序的连续性和可用性,文中通过图文介绍的非... 目录准备环境:步骤故障转移群集是 Windows Server 2022 中提供的一种功能,用于在多个

龙蜥操作系统Anolis OS-23.x安装配置图解教程(保姆级)

《龙蜥操作系统AnolisOS-23.x安装配置图解教程(保姆级)》:本文主要介绍了安装和配置AnolisOS23.2系统,包括分区、软件选择、设置root密码、网络配置、主机名设置和禁用SELinux的步骤,详细内容请阅读本文,希望能对你有所帮助... ‌AnolisOS‌是由阿里云推出的开源操作系统,旨

PyTorch使用教程之Tensor包详解

《PyTorch使用教程之Tensor包详解》这篇文章介绍了PyTorch中的张量(Tensor)数据结构,包括张量的数据类型、初始化、常用操作、属性等,张量是PyTorch框架中的核心数据结构,支持... 目录1、张量Tensor2、数据类型3、初始化(构造张量)4、常用操作5、常用属性5.1 存储(st

Java操作PDF文件实现签订电子合同详细教程

《Java操作PDF文件实现签订电子合同详细教程》:本文主要介绍如何在PDF中加入电子签章与电子签名的过程,包括编写Word文件、生成PDF、为PDF格式做表单、为表单赋值、生成文档以及上传到OB... 目录前言:先看效果:1.编写word文件1.2然后生成PDF格式进行保存1.3我这里是将文件保存到本地后

windows系统下shutdown重启关机命令超详细教程

《windows系统下shutdown重启关机命令超详细教程》shutdown命令是一个强大的工具,允许你通过命令行快速完成关机、重启或注销操作,本文将为你详细解析shutdown命令的使用方法,并提... 目录一、shutdown 命令简介二、shutdown 命令的基本用法三、远程关机与重启四、实际应用

python库fire使用教程

《python库fire使用教程》本文主要介绍了python库fire使用教程,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1.简介2. fire安装3. fire使用示例1.简介目前python命令行解析库用过的有:ar

LinuxMint怎么安装? Linux Mint22下载安装图文教程

《LinuxMint怎么安装?LinuxMint22下载安装图文教程》LinuxMint22发布以后,有很多新功能,很多朋友想要下载并安装,该怎么操作呢?下面我们就来看看详细安装指南... linux Mint 是一款基于 Ubuntu 的流行发行版,凭借其现代、精致、易于使用的特性,深受小伙伴们所喜爱。对

使用Nginx来共享文件的详细教程

《使用Nginx来共享文件的详细教程》有时我们想共享电脑上的某些文件,一个比较方便的做法是,开一个HTTP服务,指向文件所在的目录,这次我们用nginx来实现这个需求,本文将通过代码示例一步步教你使用... 在本教程中,我们将向您展示如何使用开源 Web 服务器 Nginx 设置文件共享服务器步骤 0 —

Golang使用minio替代文件系统的实战教程

《Golang使用minio替代文件系统的实战教程》本文讨论项目开发中直接文件系统的限制或不足,接着介绍Minio对象存储的优势,同时给出Golang的实际示例代码,包括初始化客户端、读取minio对... 目录文件系统 vs Minio文件系统不足:对象存储:miniogolang连接Minio配置Min

手把手教你idea中创建一个javaweb(webapp)项目详细图文教程

《手把手教你idea中创建一个javaweb(webapp)项目详细图文教程》:本文主要介绍如何使用IntelliJIDEA创建一个Maven项目,并配置Tomcat服务器进行运行,过程包括创建... 1.启动idea2.创建项目模板点击项目-新建项目-选择maven,显示如下页面输入项目名称,选择