均方误差(Mean Squared Error, MSE)与交叉熵(Cross-Entropy)的数学原理 1. 均方误差(Mean Squared Error, MSE) 均方误差主要用于回归问题,度量预测值与实际值之间的平均平方差。其数学公式为: MSE = 1 n ∑ i = 1 n ( y i − y ^ i ) 2 \text{MSE} = \frac{1}{n} \sum_{i
1. 传统的损失函数存在的问题 传统二次损失函数为: J ( W , b ) = 1 2 ( h W , b ( x ) − y ) 2 + λ 2 K ∑ k ∈ K w i j 2 J(W,b)=\frac 12(h_{W,b}(x)-y)^2+\frac \lambda{2K}\sum_{k \in K}w_{ij}^2 J(W,b)=21(hW,b(x)−y)2+2Kλk∈K∑
Aomaly Segmentation 项目记录 该文档记录异常检测在自动驾驶语义分割场景中的应用。 主要参考论文Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation 摘要: Deep neural networks (DNNs) for