F.cross_entropy 交叉熵损失

2024-06-04 20:32
文章标签 损失 交叉 cross entropy

本文主要是介绍F.cross_entropy 交叉熵损失,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

https://blog.csdn.net/wuliBob/article/details/104119616

    Examples::

        >>>import torch.nn.functional as F

        >>> input = torch.randn(3, 5, requires_grad=True)
        >>> target = torch.randint(5, (3,), dtype=torch.int64) #其中(3,)是输出的shape
        >>> loss = F.cross_entropy(input, target)
        >>> loss.backward()

这篇关于F.cross_entropy 交叉熵损失的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1031047

相关文章

cross-plateform 跨平台应用程序-03-如果只选择一个框架,应该选择哪一个?

跨平台系列 cross-plateform 跨平台应用程序-01-概览 cross-plateform 跨平台应用程序-02-有哪些主流技术栈? cross-plateform 跨平台应用程序-03-如果只选择一个框架,应该选择哪一个? cross-plateform 跨平台应用程序-04-React Native 介绍 cross-plateform 跨平台应用程序-05-Flutte

SigLIP——采用sigmoid损失的图文预训练方式

SigLIP——采用sigmoid损失的图文预训练方式 FesianXu 20240825 at Wechat Search Team 前言 CLIP中的infoNCE损失是一种对比性损失,在SigLIP这个工作中,作者提出采用非对比性的sigmoid损失,能够更高效地进行图文预训练,本文进行介绍。如有谬误请见谅并联系指出,本文遵守CC 4.0 BY-SA版权协议,转载请联系作者并注

交叉编译python

1.解决python源码,进入源码目录 2.先编译本地版本的python。直接使用命令 ./configure --prefix=/home/KAS-300/python3.8 --enable-optimizationsmake -j8make install 3.把生成的python可执行文件临时加入PATH export PATH=/home/KAS-300/python3.8/

逐行讲解Transformer的代码实现和原理讲解:计算交叉熵损失

LLM模型:Transformer代码实现和原理讲解:前馈神经网络_哔哩哔哩_bilibili 1 计算交叉熵目的 计算 loss = F.cross_entropy(input=linear_predictions_reshaped, target=targets_reshaped) 的目的是为了评估模型预测结果与实际标签之间的差距,并提供一个量化指标,用于指导模型的训练过程。具体来说,交叉

【深度学习 误差计算】10分钟了解下均方差和交叉熵损失函数

常见的误差计算函数有均方差、交叉熵、KL 散度、Hinge Loss 函数等,其中均方差函数和交叉熵函数在深度学习中比较常见,均方差主要用于回归问题,交叉熵主要用于分类问题。下面我们来深刻理解下这两个概念。 1、均方差MSE。 预测值与真实值之差的平方和,再除以样本量。 均方差广泛应用在回归问题中,在分类问题中也可以应用均方差误差。 2、交叉熵 再介绍交叉熵损失函数之前,我们首先来介绍信息

libmad音频解码库-Linux交叉编译移植

下载并解压libmad-0.15.1b.tar.gz 下载链接:https://downloads.sourceforge.net/mad/libmad-0.15.1b.tar.gz $tar -xvf libmad-0.15.1b.tar.gz$cd libmad-0.15.1b 1、先执行下面的命令:这条命令是为了适配高版本的gcc,因为高版本的gcc已经将-fforce-mem去除了:

回归预测 | Matlab基于贝叶斯算法优化XGBoost(BO-XGBoost/Bayes-XGBoost)的数据回归预测+交叉验证

回归预测 | Matlab基于贝叶斯算法优化XGBoost(BO-XGBoost/Bayes-XGBoost)的数据回归预测+交叉验证 目录 回归预测 | Matlab基于贝叶斯算法优化XGBoost(BO-XGBoost/Bayes-XGBoost)的数据回归预测+交叉验证效果一览基本介绍程序设计参考资料 效果一览 基本介绍 Matlab实现基于贝叶斯算法优化X

Anchor Alignment Metric来优化目标检测的标签分配和损失函数。

文章目录 背景假设情况任务和目标TaskAligned方法的应用1. **计算Anchor Alignment Metric**2. **动态样本分配**3. **调整损失函数** 示例总结 背景 假设我们在进行目标检测任务,并且使用了YOLOv8模型。我们希望通过TaskAligned方法来优化Anchor与目标的匹配程度,从而提升检测效果。 假设情况 图像: 一张包含

在目标检测模型中使用正样本和负样本组成的损失函数。

文章目录 背景例子说明1. **样本和标签分配**2. **计算损失函数**3. **组合损失函数** 总结 背景 在目标检测模型中,损失函数通常包含两个主要部分: 分类损失(Classification Loss):用于评估模型对目标类别的预测能力。定位损失(Localization Loss):用于评估模型对目标位置的预测准确性。 例子说明 假设我们有一个目标检测模

经验笔记:跨站脚本攻击(Cross-Site Scripting,简称XSS)

跨站脚本攻击(Cross-Site Scripting,简称XSS)经验笔记 跨站脚本攻击(XSS:Cross-Site Scripting)是一种常见的Web应用程序安全漏洞,它允许攻击者将恶意脚本注入到看起来来自可信网站的网页上。当其他用户浏览该页面时,嵌入的脚本就会被执行,从而可能对用户的数据安全构成威胁。XSS攻击通常发生在Web应用程序未能充分过滤用户提交的数据时,导致恶意脚本得以传递