分类模型的 Loss 为什么使用 cross entropy 而不是 classification error 或 squared error

本文主要是介绍分类模型的 Loss 为什么使用 cross entropy 而不是 classification error 或 squared error,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

提纲:

  1. 分类模型 与 Loss 函数的定义,

  2. 为什么不能用 Classification Error,

  3. Cross Entropy 的效果对比,
  4. 为什么不用 Mean Squared Error,

  5. 定量理解 Cross Entropy,
  6. 总结,
  7. 参考资料。
  8. 交叉熵定义:http://blog.csdn.net/lanchunhui/article/details/50970625

分类模型 与 Loss 函数的定义


分类和回归问题,是监督学习的 2 大分支。

不同点在于:分类问题的目标变量是离散的,而回归是连续的数值。

本文讨论的是分类模型。


分类模型的例子:

根据年龄、性别、年收入等相互独立的特征,

预测一个人的政治倾向(民主党、共和党、其他党派)。


为了训练模型,必须先定义衡量模型好与坏的标准。

在机器学习中,我们使用 loss / cost,即,

当前模型与理想模型的差距。

训练的目的,就是不断缩小 loss / cost.


为什么不能用 classification error


\text{classification error} = \frac{\text{count of error items}}{\text{count of all items}}

大多数人望文生义的 loss,可能是上面这个公式。

我们用一个的实际模型来看 classification error 的弊端。


使用 3 组训练数据,

computed 一栏是预测结果,targets 是预期结果。

二者的数字,都可以理解为概率。

correct 一栏表示预测是否正确。

模型 1

computed       | targets              | correct?
------------------------------------------------
0.3  0.3  0.4  | 0  0  1 (democrat)   | yes
0.3  0.4  0.3  | 0  1  0 (republican) | yes
0.1  0.2  0.7  | 1  0  0 (other)      | no

item 1 和 2 以非常微弱的优势判断正确,item 3 则彻底错误。

\text{classification error} = 1/3 = 0.33

模型 2

computed       | targets              | correct?
-------------------------------------------------
0.1  0.2  0.7  | 0  0  1 (democrat)   | yes
0.1  0.7  0.2  | 0  1  0 (republican) | yes
0.3  0.4  0.3  | 1  0  0 (other)      | no

item 1 和 2 的判断非常精准,item 3 判错,但比较轻。

\text{classification error} = 1/3 = 0.33

结论

2 个模型的 classification error 相等,但模型 2 要明显优于模型 1.

classification error 很难精确描述模型与理想模型之间的距离。

Cross-Entropy 的效果对比

TensoFlow 官网的 MNIST For ML Beginners 中 cross entropy 的计算公式是:

H_{y'}(y) := -\sum_{i}y'_i \log(y_i)

根据公式,

第一个模型中第一项的 cross-entropy 是:

-( (ln(0.3)*0) + (ln(0.3)*0) + (ln(0.4)*1) ) = -ln(0.4)

所以,第一个模型的 ACE ( average cross-entropy error ) 是

-(ln(0.4) + ln(0.4) + ln(0.1)) / 3 = 1.38

第二个模型的 ACE 是:

(ln(0.7) + ln(0.7) + ln(0.3)) / 3 = 0.64

结论

ACE 结果准确的体现了模型 2 优于模型 1。

cross-entropy 更清晰的描述了模型与理想模型的距离。


为什么不用 Mean Squared Error (平方和)


若使用 MSE(mean squared error),

第一个模型第一项的 loss 是

(0.3 - 0)^2 + (0.3 - 0)^2 + (0.4 - 1)^2 = 0.09 + 0.09 + 0.36 = 0.54

第一个模型的 loss 是

(0.54 + 0.54 + 1.34) / 3 = 0.81

第二个模型的 loss 是

(0.14 + 0.14 + 0.74) / 3 = 0.34

看起来也是蛮不错的。为何不用?

分类问题,最后必须是 one hot 形式算出各 label 的概率,

然后通过 argmax 选出最终的分类。

(稍后用一篇文章解释必须 one hot 的原因)

在计算各个 label 概率的时候,用的是 softmax 函数。

softmax(x)_i = \frac{\exp(x_i)}{\sum_j \exp(x_j)}

如果用 MSE 计算 loss,

输出的曲线是波动的,有很多局部的极值点。

即,非凸优化问题 (non-convex)

cross entropy 计算 loss,则依旧是一个凸优化问题,

用梯度下降求解时,凸优化问题有很好的收敛特性。

定量理解 cross entropy

训练的时候,loss 为 0.1 是什么概念,0.01 呢?

总结


分类问题,都用 onehot + cross entropy

training 过程中,分类问题用 cross entropy,回归问题用 mean squared error。

training 之后,validation / testing 时,使用 classification error,更直观,而且是我们最关注的指标。

参考资料

分类模型的本质是组合数学问题 A Tutorial on the Cross-Entropy Method

文中的对比模型来自:Why You Should Use Cross-Entropy Error Instead Of Classification Error Or Mean Squared Error For Neural Network Classifier Training

关于 cross entropy 与 MSE 的详细对比:books.jackon.me/Cross-E

Ng 的公开课中有详细讨论 logistic regression 的 loss 函数 coursera.org/learn/mach

这篇关于分类模型的 Loss 为什么使用 cross entropy 而不是 classification error 或 squared error的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/957966

相关文章

如何使用celery进行异步处理和定时任务(django)

《如何使用celery进行异步处理和定时任务(django)》文章介绍了Celery的基本概念、安装方法、如何使用Celery进行异步任务处理以及如何设置定时任务,通过Celery,可以在Web应用中... 目录一、celery的作用二、安装celery三、使用celery 异步执行任务四、使用celery

使用Python绘制蛇年春节祝福艺术图

《使用Python绘制蛇年春节祝福艺术图》:本文主要介绍如何使用Python的Matplotlib库绘制一幅富有创意的“蛇年有福”艺术图,这幅图结合了数字,蛇形,花朵等装饰,需要的可以参考下... 目录1. 绘图的基本概念2. 准备工作3. 实现代码解析3.1 设置绘图画布3.2 绘制数字“2025”3.3

Jsoncpp的安装与使用方式

《Jsoncpp的安装与使用方式》JsonCpp是一个用于解析和生成JSON数据的C++库,它支持解析JSON文件或字符串到C++对象,以及将C++对象序列化回JSON格式,安装JsonCpp可以通过... 目录安装jsoncppJsoncpp的使用Value类构造函数检测保存的数据类型提取数据对json数

python使用watchdog实现文件资源监控

《python使用watchdog实现文件资源监控》watchdog支持跨平台文件资源监控,可以检测指定文件夹下文件及文件夹变动,下面我们来看看Python如何使用watchdog实现文件资源监控吧... python文件监控库watchdogs简介随着Python在各种应用领域中的广泛使用,其生态环境也

Python中构建终端应用界面利器Blessed模块的使用

《Python中构建终端应用界面利器Blessed模块的使用》Blessed库作为一个轻量级且功能强大的解决方案,开始在开发者中赢得口碑,今天,我们就一起来探索一下它是如何让终端UI开发变得轻松而高... 目录一、安装与配置:简单、快速、无障碍二、基本功能:从彩色文本到动态交互1. 显示基本内容2. 创建链

springboot整合 xxl-job及使用步骤

《springboot整合xxl-job及使用步骤》XXL-JOB是一个分布式任务调度平台,用于解决分布式系统中的任务调度和管理问题,文章详细介绍了XXL-JOB的架构,包括调度中心、执行器和Web... 目录一、xxl-job是什么二、使用步骤1. 下载并运行管理端代码2. 访问管理页面,确认是否启动成功

使用Nginx来共享文件的详细教程

《使用Nginx来共享文件的详细教程》有时我们想共享电脑上的某些文件,一个比较方便的做法是,开一个HTTP服务,指向文件所在的目录,这次我们用nginx来实现这个需求,本文将通过代码示例一步步教你使用... 在本教程中,我们将向您展示如何使用开源 Web 服务器 Nginx 设置文件共享服务器步骤 0 —

Java中switch-case结构的使用方法举例详解

《Java中switch-case结构的使用方法举例详解》:本文主要介绍Java中switch-case结构使用的相关资料,switch-case结构是Java中处理多个分支条件的一种有效方式,它... 目录前言一、switch-case结构的基本语法二、使用示例三、注意事项四、总结前言对于Java初学者

Golang使用minio替代文件系统的实战教程

《Golang使用minio替代文件系统的实战教程》本文讨论项目开发中直接文件系统的限制或不足,接着介绍Minio对象存储的优势,同时给出Golang的实际示例代码,包括初始化客户端、读取minio对... 目录文件系统 vs Minio文件系统不足:对象存储:miniogolang连接Minio配置Min

使用Python绘制可爱的招财猫

《使用Python绘制可爱的招财猫》招财猫,也被称为“幸运猫”,是一种象征财富和好运的吉祥物,经常出现在亚洲文化的商店、餐厅和家庭中,今天,我将带你用Python和matplotlib库从零开始绘制一... 目录1. 为什么选择用 python 绘制?2. 绘图的基本概念3. 实现代码解析3.1 设置绘图画