分类模型的 Loss 为什么使用 cross entropy 而不是 classification error 或 squared error

本文主要是介绍分类模型的 Loss 为什么使用 cross entropy 而不是 classification error 或 squared error,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

提纲:

  1. 分类模型 与 Loss 函数的定义,

  2. 为什么不能用 Classification Error,

  3. Cross Entropy 的效果对比,
  4. 为什么不用 Mean Squared Error,

  5. 定量理解 Cross Entropy,
  6. 总结,
  7. 参考资料。
  8. 交叉熵定义:http://blog.csdn.net/lanchunhui/article/details/50970625

分类模型 与 Loss 函数的定义


分类和回归问题,是监督学习的 2 大分支。

不同点在于:分类问题的目标变量是离散的,而回归是连续的数值。

本文讨论的是分类模型。


分类模型的例子:

根据年龄、性别、年收入等相互独立的特征,

预测一个人的政治倾向(民主党、共和党、其他党派)。


为了训练模型,必须先定义衡量模型好与坏的标准。

在机器学习中,我们使用 loss / cost,即,

当前模型与理想模型的差距。

训练的目的,就是不断缩小 loss / cost.


为什么不能用 classification error


\text{classification error} = \frac{\text{count of error items}}{\text{count of all items}}

大多数人望文生义的 loss,可能是上面这个公式。

我们用一个的实际模型来看 classification error 的弊端。


使用 3 组训练数据,

computed 一栏是预测结果,targets 是预期结果。

二者的数字,都可以理解为概率。

correct 一栏表示预测是否正确。

模型 1

computed       | targets              | correct?
------------------------------------------------
0.3  0.3  0.4  | 0  0  1 (democrat)   | yes
0.3  0.4  0.3  | 0  1  0 (republican) | yes
0.1  0.2  0.7  | 1  0  0 (other)      | no

item 1 和 2 以非常微弱的优势判断正确,item 3 则彻底错误。

\text{classification error} = 1/3 = 0.33

模型 2

computed       | targets              | correct?
-------------------------------------------------
0.1  0.2  0.7  | 0  0  1 (democrat)   | yes
0.1  0.7  0.2  | 0  1  0 (republican) | yes
0.3  0.4  0.3  | 1  0  0 (other)      | no

item 1 和 2 的判断非常精准,item 3 判错,但比较轻。

\text{classification error} = 1/3 = 0.33

结论

2 个模型的 classification error 相等,但模型 2 要明显优于模型 1.

classification error 很难精确描述模型与理想模型之间的距离。

Cross-Entropy 的效果对比

TensoFlow 官网的 MNIST For ML Beginners 中 cross entropy 的计算公式是:

H_{y'}(y) := -\sum_{i}y'_i \log(y_i)

根据公式,

第一个模型中第一项的 cross-entropy 是:

-( (ln(0.3)*0) + (ln(0.3)*0) + (ln(0.4)*1) ) = -ln(0.4)

所以,第一个模型的 ACE ( average cross-entropy error ) 是

-(ln(0.4) + ln(0.4) + ln(0.1)) / 3 = 1.38

第二个模型的 ACE 是:

(ln(0.7) + ln(0.7) + ln(0.3)) / 3 = 0.64

结论

ACE 结果准确的体现了模型 2 优于模型 1。

cross-entropy 更清晰的描述了模型与理想模型的距离。


为什么不用 Mean Squared Error (平方和)


若使用 MSE(mean squared error),

第一个模型第一项的 loss 是

(0.3 - 0)^2 + (0.3 - 0)^2 + (0.4 - 1)^2 = 0.09 + 0.09 + 0.36 = 0.54

第一个模型的 loss 是

(0.54 + 0.54 + 1.34) / 3 = 0.81

第二个模型的 loss 是

(0.14 + 0.14 + 0.74) / 3 = 0.34

看起来也是蛮不错的。为何不用?

分类问题,最后必须是 one hot 形式算出各 label 的概率,

然后通过 argmax 选出最终的分类。

(稍后用一篇文章解释必须 one hot 的原因)

在计算各个 label 概率的时候,用的是 softmax 函数。

softmax(x)_i = \frac{\exp(x_i)}{\sum_j \exp(x_j)}

如果用 MSE 计算 loss,

输出的曲线是波动的,有很多局部的极值点。

即,非凸优化问题 (non-convex)

cross entropy 计算 loss,则依旧是一个凸优化问题,

用梯度下降求解时,凸优化问题有很好的收敛特性。

定量理解 cross entropy

训练的时候,loss 为 0.1 是什么概念,0.01 呢?

总结


分类问题,都用 onehot + cross entropy

training 过程中,分类问题用 cross entropy,回归问题用 mean squared error。

training 之后,validation / testing 时,使用 classification error,更直观,而且是我们最关注的指标。

参考资料

分类模型的本质是组合数学问题 A Tutorial on the Cross-Entropy Method

文中的对比模型来自:Why You Should Use Cross-Entropy Error Instead Of Classification Error Or Mean Squared Error For Neural Network Classifier Training

关于 cross entropy 与 MSE 的详细对比:books.jackon.me/Cross-E

Ng 的公开课中有详细讨论 logistic regression 的 loss 函数 coursera.org/learn/mach

这篇关于分类模型的 Loss 为什么使用 cross entropy 而不是 classification error 或 squared error的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/957966

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

pdfmake生成pdf的使用

实际项目中有时会有根据填写的表单数据或者其他格式的数据,将数据自动填充到pdf文件中根据固定模板生成pdf文件的需求 文章目录 利用pdfmake生成pdf文件1.下载安装pdfmake第三方包2.封装生成pdf文件的共用配置3.生成pdf文件的文件模板内容4.调用方法生成pdf 利用pdfmake生成pdf文件 1.下载安装pdfmake第三方包 npm i pdfma