损失函数softmax_cross_entropy、binary_cross_entropy、sigmoid_cross_entropy之间的区别与联系

本文主要是介绍损失函数softmax_cross_entropy、binary_cross_entropy、sigmoid_cross_entropy之间的区别与联系,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

cross_entropy-----交叉熵是深度学习中常用的一个概念,一般用来求目标与预测值之间的差距。

在介绍softmax_cross_entropy,binary_cross_entropy、sigmoid_cross_entropy之前,先来回顾一下信息量、熵、交叉熵等基本概念。

---------------------

信息论

交叉熵是信息论中的一个概念,要想了解交叉熵的本质,需要先从最基本的概念讲起。

一、信息量

首先是信息量。假设我们听到了两件事,分别如下:

事件A:巴西队进入了2018世界杯决赛圈。

事件B:中国队进入了2018世界杯决赛圈。

仅凭直觉来说,显而易见事件B的信息量比事件A的信息量要大。究其原因,是因为事件A发生的概率很大,事件B发生的概率很小。所以当越不可能的事件发生了,我们获取到的信息量就越大。越可能发生的事件发生了,我们获取到的信息量就越小。那么信息量应该和事件发生的概率有关。

二、什么是熵

对于某个事件,有n种可能性,每一种可能性都有一个概率p(xi)

这样就可以计算出某一种可能性的信息量。举一个例子,假设你拿出了你的电脑,按下开关,会有三种可能性,下表列出了每一种可能的概率及其对应的信息量

注:文中的对数均为自然对数

我们现在有了信息量的定义,而熵用来表示所有信息量的期望,即:

其中n代表所有的n种可能性,所以上面的问题结果就是

二、 相对熵(KL散度)

相对熵又称KL散度,如果我们对于同一个随机变量 x 有两个单独的概率分布 P(x) 和 Q(x),我们可以使用 KL 散度(Kullback-Leibler (KL) divergence)来衡量这两个分布的差异

在机器学习中,P往往用来表示样本的真实分布,比如[1,0,0]表示当前样本属于第一类。Q用来表示模型所预测的分布,比如[0.7,0.2,0.1]

KL散度的计算公式:

 

三、什么是交叉熵

交叉熵

对式3.1变形可以得到:

 

其中p代表label或者叫groundtruth,q代表预测值

在机器学习中,我们需要评估label和predicts之间的差距,使用KL散度刚刚好,即

由于KL散度中的前一部分恰巧就是p的熵,p代表label或者叫groundtruth,故−H(p(x))不变,故在优化过程中,只需要关注交叉熵就可以了,所以一般在机器学习中直接用用交叉熵做loss,评估模型。

交叉熵

 

四、softmax_cross_entropy

以tensorflow中函数softmax_cross_entropy_with_logits为例,在二分类或者类别相互排斥多分类问题,计算 logits 和 labels 之间的 softmax 交叉熵

数据必须经过 One-Hot Encoding 编码

tf.one_hot

用 mnist 数据举例,如果是目标值是3,那么 label 就是[0,0,0,1,0,0,0,0,0,0],除了第4个值为1,其他全为0。

该函数把一个维度上的 labels 作为一个整体判断,结果给出整个维度的损失值

这个函数传入的 logits 是 unscaled 的,既不做 sigmoid 也不做 softmax ,因为函数实现会在内部更高效得使用 softmax 。

softmax_cross_entropy_with_logits计算过程

1、对输入进行softmax

 

softmax公式

举个例子:假设你的输入S=[1,2,3],那么经过softmax层后就会得到[0.09,0.24,0.67],这三个数字表示这个样本属于第1,2,3类的概率分别是0.09,0.24,0.67。

2、计算交叉熵

 

交叉熵公式

L是损失,Sj是softmax的输出向量S的第j个值,前面已经介绍过了,表示的是这个样本属于第j个类别的概率。yj前面有个求和符号,j的范围也是1到类别数T,因此label——y是一个1*T的向量,里面的T个值,而且只有1个值是1,其他T-1个值都是0。真实标签对应的位置的那个值是1,其他都是0。所以这个公式其实有一个更简单的形式:

 

来举个例子吧。假设一个5分类问题,然后一个样本I的标签y=[0,0,0,1,0],也就是说样本I的真实标签是4,假设模型预测的结果概率(softmax的输出)p=[0.1,0.15,0.05,0.6,0.1],可以看出这个预测是对的,那么对应的损失L=-log(0.6),也就是当这个样本经过这样的网络参数产生这样的预测p时,它的损失是-log(0.6)。那么假设p=[0.15,0.2,0.4,0.1,0.15],这个预测结果就很离谱了,因为真实标签是4,而你觉得这个样本是4的概率只有0.1(远不如其他概率高,如果是在测试阶段,那么模型就会预测该样本属于类别3),对应损失L=-log(0.1)。

补充:sparse_softmax_cross_entropy_with_logits

sparse_softmax_cross_entropy_with_logits 是 softmax_cross_entropy_with_logits 的易用版本,除了输入参数不同,作用和算法实现都是一样的。

区别是:softmax_cross_entropy_with_logits 要求传入的 labels 是经过 one_hot encoding 的数据,而 sparse_softmax_cross_entropy_with_logits 不需要。

 

五、binary_cross_entropy

binary_cross_entropy是二分类的交叉熵,实际是多分类softmax_cross_entropy的一种特殊情况,当多分类中,类别只有两类时,即0或者1,即为二分类,二分类也是一个逻辑回归问题,也可以套用逻辑回归的损失函数。

1、利用softmax_cross_entropy_with_logits来计算二分类的交叉熵

来举个例子,假设一个2分类问题,假如一个batch包含两个样本,那么标签要制成二维,形如

y=[ [1, 0],[0, 1] ]

模型预测输出也为二维,形如

p=[ [0.8,0.2],[0.4,0.6] ]  #(softmax的输出)

那么对应的损失

L=( -log(0.8) - log(0.6) ) / 2

实际在计算中若采用softmax_cross_entropy_with_logits函数,不要事先做softmax处理。

 

2、套用逻辑回归代价损失函数来计算二分类的交叉熵

逻辑回归的损失函数如下:

来举个例子,假设一个2分类问题,假如一个batch包含两个样本,那么标签要制成一维,形如

y=[0,1 ]

模型预测输出也为一维,形如

p=[ 0.2,0.6 ]  #sigmoid的输出,这里一定要预先用sigmod处理,将预测结果限定在0~1之间,

那么对应的损失

L=( - 0*log(0.2) - (1 - 0)*log(1- 0.2) - log(0.6) - (1 -1)*log(1 - 0.6) ) / 2 = ( -log(0.8) - log(0.6) ) / 2

 

 

六、sigmoid_cross_entropy

以tensorflow中函数sigmoid_cross_entropy_with_logits为例说明

sigmoid_cross_entropy_with_logits函数,测量每个类别独立且不相互排斥的离散分类任务中的概率。(可以执行多标签分类,其中图片可以同时包含大象和狗。)

import tensorflow as tf_logits = [[0.5, 0.7, 0.3], [0.8, 0.2, 0.9]]_one_labels = tf.ones_like(_logits)# [[1 1 1]   #  [1 1 1]]   _zero_labels = tf.zeros_like(_logits)# [[0 0 0]   #  [0 0 0]]   with tf.Session() as sess:loss = tf.nn.sigmoid_cross_entropy_with_logits(logits=_logits, labels=_one_labels)print(sess.run(loss))# [[0.47407699  0.40318602  0.5543552]   #  [0.37110069  0.59813887  0.34115386]]   loss = tf.nn.sigmoid_cross_entropy_with_logits(logits=_logits, labels=_zero_labels)print(sess.run(loss))# [[0.97407699  1.10318601  0.85435522]   #  [1.17110074  0.79813886  1.24115384]]

 

看看sigmoid_cross_entropy_with_logits函数定义

def sigmoid_cross_entropy_with_logits(_sentinel=None,  labels=None, logits=None,  name=None):

#为了描述简洁,规定 x = logits,z = labels,那么 Logistic 损失值为:   

   z * -log(sigmoid(x)) + (1 - z) * -log(1 - sigmoid(x))= z * -log(1 / (1 + exp(-x))) + (1 - z) * -log(exp(-x) / (1 + exp(-x)))= z * log(1 + exp(-x)) + (1 - z) * (-log(exp(-x)) + log(1 + exp(-x)))= z * log(1 + exp(-x)) + (1 - z) * (x + log(1 + exp(-x))= (1 - z) * x + log(1 + exp(-x))= x - x * z + log(1 + exp(-x))

该函数与 softmax_cross_entropy_with_logits的区别在于:softmax_cross_entropy_with_logits中的labels 中每一维只能包含一个 1,sigmoid_cross_entropy_with_logits中的labels 中每一维可以包含多个 1。

softmax_cross_entropy_with_logits函数把一个维度上的 labels 作为一个整体判断,结果给出整个维度的损失值,而 sigmoid_cross_entropy_with_logits 是每一个元素都有一个损失值,都是一个二分类(binary_cross_entropy)问题。

 

参考:https://www.cnblogs.com/guqiangjs/p/8202899.html

 

这篇关于损失函数softmax_cross_entropy、binary_cross_entropy、sigmoid_cross_entropy之间的区别与联系的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/571395

相关文章

2.1/5.1和7.1声道系统有什么区别? 音频声道的专业知识科普

《2.1/5.1和7.1声道系统有什么区别?音频声道的专业知识科普》当设置环绕声系统时,会遇到2.1、5.1、7.1、7.1.2、9.1等数字,当一遍又一遍地看到它们时,可能想知道它们是什... 想要把智能电视自带的音响升级成专业级的家庭影院系统吗?那么你将面临一个重要的选择——使用 2.1、5.1 还是

Python中@classmethod和@staticmethod的区别

《Python中@classmethod和@staticmethod的区别》本文主要介绍了Python中@classmethod和@staticmethod的区别,文中通过示例代码介绍的非常详细,对大... 目录1.@classmethod2.@staticmethod3.例子1.@classmethod

Golan中 new() 、 make() 和简短声明符的区别和使用

《Golan中new()、make()和简短声明符的区别和使用》Go语言中的new()、make()和简短声明符的区别和使用,new()用于分配内存并返回指针,make()用于初始化切片、映射... 详细介绍golang的new() 、 make() 和简短声明符的区别和使用。文章目录 `new()`

Python中json文件和jsonl文件的区别小结

《Python中json文件和jsonl文件的区别小结》本文主要介绍了JSON和JSONL两种文件格式的区别,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下... 众所周知,jsON 文件是使用php JSON(JavaScripythonpt Object No

Oracle的to_date()函数详解

《Oracle的to_date()函数详解》Oracle的to_date()函数用于日期格式转换,需要注意Oracle中不区分大小写的MM和mm格式代码,应使用mi代替分钟,此外,Oracle还支持毫... 目录oracle的to_date()函数一.在使用Oracle的to_date函数来做日期转换二.日

结构体和联合体的区别及说明

《结构体和联合体的区别及说明》文章主要介绍了C语言中的结构体和联合体,结构体是一种自定义的复合数据类型,可以包含多个成员,每个成员可以是不同的数据类型,联合体是一种特殊的数据结构,可以在内存中共享同一... 目录结构体和联合体的区别1. 结构体(Struct)2. 联合体(Union)3. 联合体与结构体的

什么是 Ubuntu LTS?Ubuntu LTS和普通版本区别对比

《什么是UbuntuLTS?UbuntuLTS和普通版本区别对比》UbuntuLTS是Ubuntu操作系统的一个特殊版本,旨在提供更长时间的支持和稳定性,与常规的Ubuntu版本相比,LTS版... 如果你正打算安装 Ubuntu 系统,可能会被「LTS 版本」和「普通版本」给搞得一头雾水吧?尤其是对于刚入

python中json.dumps和json.dump区别

《python中json.dumps和json.dump区别》json.dumps将Python对象序列化为JSON字符串,json.dump直接将Python对象序列化写入文件,本文就来介绍一下两个... 目录1、json.dumps和json.dump的区别2、使用 json.dumps() 然后写入文

C++11的函数包装器std::function使用示例

《C++11的函数包装器std::function使用示例》C++11引入的std::function是最常用的函数包装器,它可以存储任何可调用对象并提供统一的调用接口,以下是关于函数包装器的详细讲解... 目录一、std::function 的基本用法1. 基本语法二、如何使用 std::function

hdu1171(母函数或多重背包)

题意:把物品分成两份,使得价值最接近 可以用背包,或者是母函数来解,母函数(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v) 其中指数为价值,每一项的数目为(该物品数+1)个 代码如下: #include<iostream>#include<algorithm>