1、岭回归 岭回归是一种专用于共线性数据分析的有偏估计回归方法,实质上是一种改良的最小二乘估计法,通过放弃最小二乘法的无偏性,以损失部分信息、降低精度为代价获得回归系数更为符合实际、更可靠的回归方法,对病态数据的拟合要强于最小二乘法。 1.1 Ridge线性回归sklearn API sklearn.linear_model.Ridge class sklearn.linear_model
sigmoid 公式: s i g m o i d ( x ) = 1 1 + e − x sigmoid(x) = \frac{1}{1 + e^{-x}} sigmoid(x)=1+e−x1 函数曲线如下: 导数公式: f ( x ) ′ = e − x ( 1 + e − x ) 2 = f ( x ) ( 1 − f ( x ) ) f(x)\prime = \frac{
Sigmoid型函数的梯度消失问题 基础知识 s i g m o i d sigmoid sigmoid 是一种函数类型,具有函数图形为S型曲线,单增,反函数也单增,而且输出值范围为(0,1)等特点,但其一般被默认为是 l o g i s t i c logistic logistic 函数: S ( x ) = 1 1 + exp ( − x ) S(x) = \frac{1}{1