softmax和sigmoid的区别

2024-03-07 04:36
文章标签 区别 sigmoid softmax

本文主要是介绍softmax和sigmoid的区别,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

sigmoid

公式: s i g m o i d ( x ) = 1 1 + e − x sigmoid(x) = \frac{1}{1 + e^{-x}} sigmoid(x)=1+ex1

函数曲线如下:

Panda

导数公式: f ( x ) ′ = e − x ( 1 + e − x ) 2 = f ( x ) ( 1 − f ( x ) ) f(x)\prime = \frac{ e^{-x}}{(1 + e^{-x})^2} = f(x)(1-f(x)) f(x)=(1+ex)2ex=f(x)(1f(x))

导数曲线如下:

Panda

sigmoid代码:

import torch
import torch.nn.functional as F// sigmoid函数
x = torch.tensor([1.0, 2.0, 3.0])
// y = 1 / (1 + torch.exp(-x))	
y = torch.sigmoid(x)
print(f"sigmoid result: {y}")
print(f"sigmoid derivative: {y * (1 - y)}")

softmax

公式:
s o f t m a x ( z i ) = z i ∑ j = 1 n e z j softmax(z_i) = \frac{z_i}{\sum_{j=1}^n e^{z_j}} softmax(zi)=j=1nezjzi
指数函数曲线: y = e x y= e^{x} y=ex

Panda
  • 引入指数形式的优点:
    指数函数曲线呈现递增趋势,斜率逐渐增大,在 x 轴上一个很小的变化可以导致 y 轴上很大的变化。
  • 引入指数形式的缺点:
    当 z值非常大时,计算得到的数值会变得非常大,可能会溢出。通常针对数值溢出的方法,是将每一个输出值减去输出值中的最大值。

导数公式:

Panda

softmax代码:

import torch
import torch.nn.functional as Fdef softmax(x):"""Compute the softmax of vector x."""exps = np.exp(x)return exps / np.sum(exps) // softmax函数
x = torch.tensor([1.0, 2.0, 3.0])
y = F.softmax(x, dim=0)
print(f"softmax result: {y}")
print(f"softmax derivative: {torch.diag(y) - torch.outer(y, y)}")

softmax与cross entropy的联系

事实上,交叉熵与Softmax没有直接的关系。
交叉熵本质是衡量两个概率分布的距离的,而softmax能把一切转换成概率分布。
H ( L , P ) = − ∑ j = 1 n L j l o g ( P j ) H(L,P) = -\sum_{j=1}^nL_jlog(P_j) H(L,P)=j=1nLjlog(Pj)
其中P是预测概率分布,L是真实标签分布。

这篇关于softmax和sigmoid的区别的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/782391

相关文章

native和static native区别

本文基于Hello JNI  如有疑惑,请看之前几篇文章。 native 与 static native java中 public native String helloJni();public native static String helloJniStatic();1212 JNI中 JNIEXPORT jstring JNICALL Java_com_test_g

Android fill_parent、match_parent、wrap_content三者的作用及区别

这三个属性都是用来适应视图的水平或者垂直大小,以视图的内容或尺寸为基础的布局,比精确的指定视图的范围更加方便。 1、fill_parent 设置一个视图的布局为fill_parent将强制性的使视图扩展至它父元素的大小 2、match_parent 和fill_parent一样,从字面上的意思match_parent更贴切一些,于是从2.2开始,两个属性都可以使用,但2.3版本以后的建议使

Collection List Set Map的区别和联系

Collection List Set Map的区别和联系 这些都代表了Java中的集合,这里主要从其元素是否有序,是否可重复来进行区别记忆,以便恰当地使用,当然还存在同步方面的差异,见上一篇相关文章。 有序否 允许元素重复否 Collection 否 是 List 是 是 Set AbstractSet 否

javascript中break与continue的区别

在javascript中,break是结束整个循环,break下面的语句不再执行了 for(let i=1;i<=5;i++){if(i===3){break}document.write(i) } 上面的代码中,当i=1时,执行打印输出语句,当i=2时,执行打印输出语句,当i=3时,遇到break了,整个循环就结束了。 执行结果是12 continue语句是停止当前循环,返回从头开始。

maven发布项目到私服-snapshot快照库和release发布库的区别和作用及maven常用命令

maven发布项目到私服-snapshot快照库和release发布库的区别和作用及maven常用命令 在日常的工作中由于各种原因,会出现这样一种情况,某些项目并没有打包至mvnrepository。如果采用原始直接打包放到lib目录的方式进行处理,便对项目的管理带来一些不必要的麻烦。例如版本升级后需要重新打包并,替换原有jar包等等一些额外的工作量和麻烦。为了避免这些不必要的麻烦,通常我们

ActiveMQ—Queue与Topic区别

Queue与Topic区别 转自:http://blog.csdn.net/qq_21033663/article/details/52458305 队列(Queue)和主题(Topic)是JMS支持的两种消息传递模型:         1、点对点(point-to-point,简称PTP)Queue消息传递模型:         通过该消息传递模型,一个应用程序(即消息生产者)可以

SigLIP——采用sigmoid损失的图文预训练方式

SigLIP——采用sigmoid损失的图文预训练方式 FesianXu 20240825 at Wechat Search Team 前言 CLIP中的infoNCE损失是一种对比性损失,在SigLIP这个工作中,作者提出采用非对比性的sigmoid损失,能够更高效地进行图文预训练,本文进行介绍。如有谬误请见谅并联系指出,本文遵守CC 4.0 BY-SA版权协议,转载请联系作者并注

深入探讨:ECMAScript与JavaScript的区别

在前端开发的世界中,JavaScript无疑是最受欢迎的编程语言之一。然而,很多开发者在使用JavaScript时,可能并不清楚ECMAScript与JavaScript之间的关系和区别。本文将深入探讨这两者的不同之处,并通过案例帮助大家更好地理解。 一、什么是ECMAScript? ECMAScript(简称ES)是一种脚本语言的标准,由ECMA国际组织制定。它定义了语言的语法、类型、语句、

Lua 脚本在 Redis 中执行时的原子性以及与redis的事务的区别

在 Redis 中,Lua 脚本具有原子性是因为 Redis 保证在执行脚本时,脚本中的所有操作都会被当作一个不可分割的整体。具体来说,Redis 使用单线程的执行模型来处理命令,因此当 Lua 脚本在 Redis 中执行时,不会有其他命令打断脚本的执行过程。脚本中的所有操作都将连续执行,直到脚本执行完成后,Redis 才会继续处理其他客户端的请求。 Lua 脚本在 Redis 中原子性的原因

msys2 minggw-w64 cygwin wsl区别

1 mingw-w64,这是gcc一直win平台下产生的,所以是win版的gcc,既支持32也支持64bit 2cygwin专注于原样在windows上构建unix软件, 3msys让Linux开发者在windows上运行软件,msys2专注于构建针对windows api构建的本机软件 4 wsl  windows subsystem for linux 是一个在windows 10 上能