本文主要是介绍ReLU Sigmoid and Tanh,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
ReLU 激活函数:
ReLu使得网络可以自行引入稀疏性,在没做预训练情况下,以ReLu为激活的网络性能优于其它激活函数。
数学表达式: y=max(0,x)
Sigmoid 激活函数:
sigmoid 激活函数在神经网络学习方面,可以将重点特征推向中央区,将非重点特征推向两侧区。
数学表达式(正切函数): y=(1+exp(−x))−1
导数:f(z)' = f(z)(1 − f(z))
Tanh 激活函数:
Tanh 激活函数使得输出与输入的关系能保持非线性单调上升和下降关系,比sigmoid 函数延迟了饱和期,对神经网路的容错性好。
数学表达式(双曲正切函数): y=exp(x)−exp(−x)exp(x)+exp(−x)
导数:f(z)' = 1 − (f(z))2
为什么通常Relu比sigmoid和tanh强,有什么不同?
1、主要是因为它们gradient特性不同。sigmoid和tanh的gradient在饱和区域非常平缓,接近于0,很容易造成vanishing gradient的问题,减缓收敛速度。vanishing gradient在网络层数多的时候尤其明显,是加深网络结构的主要障碍之一。相反,Relu的gradient大多数情况下是常数,有助于解决深层网络的收敛问题。
2、Relu的另一个优势是在生物上的合理性,它是单边的,相比sigmoid和tanh,更符合生物神经元的特征。
3、而提出sigmoid和tanh,主要是因为它们全程可导。
4、还有表达区间问题,sigmoid和tanh区间是0到1,或着-1到1,在表达上,尤其是输出层的表达上有优势。
为什么引入非线性激励函数?
如果不用激励函数(其实相当于激励函数是f(x) = x),在这种情况下你每一层输出都是上层输入的线性函数,很容易验证,无论你神经网络有多少层,输出都是输入的线性组合,与没有隐藏层效果相当,这种情况就是最原始的感知机(Perceptron)了。
正因为上面的原因,我们决定引入非线性函数作为激励函数,这样深层神经网络就有意义了(不再是输入的线性组合,可以逼近任意函数)。最早的想法是sigmoid函数或者tanh函数,输出有界,很容易充当下一层输入(以及一些人的生物解释)。
为什么引入Relu呢?
第一,采用sigmoid等函数,计算激活函数时(指数运算),计算量大,反向传播求误差梯度时,求导涉及除法,计算量相对大,而采用Relu激活函数,整个过程的计算量节省很多。
第二,对于深层网络,sigmoid函数反向传播时,很容易就会出现梯度消失的情况(在sigmoid接近饱和区时,变换太缓慢,导数趋于0,这种情况会造成信息丢失),从而无法完成深层网络的训练。
第三,Relu会使一部分神经元的输出为0,这样就造成了网络的稀疏性,并且减少了参数的相互依存关系,缓解了过拟合问题的发生(以及一些人的生物解释)。
当然现在也有一些对relu的改进,比如prelu,random relu等,在不同的数据集上会有一些训练速度上或者准确率上的改进。
现在主流的做法,会在做完relu之后,加一步batch normalization,尽可能保证每一层网络的输入具有相同的分布[。而最新的paper,他们在加入bypass connection之后,发现改变batch normalization的位置会有更好的效果。
激活函数具备的性质
激活函数的主要作用是提供网络的非线性建模能力。如果没有激活函数,那么该网络仅能够表达线性映射,此时即便有再多的隐藏层,其整个网络跟单层神经网络也是等价的。因此也可以认为,只有加入了激活函数之后,深度神经网络才具备了分层的非线性映射学习能力。 那么激活函数应该具有什么样的性质呢?
非线性: 当激活函数是非线性的时候,一个两层的神经网络就可以逼近基本上所有的函数了。但是,如果激活函数是恒等激活函数的时候(即f(x)=x),就不满足这个性质了,而且如果MLP使用的是恒等激活函数,那么其实整个网络跟单层神经网络是等价的。
可微性: 当优化方法是基于梯度的时候,这个性质是必须的。
单调性: 当激活函数是单调的时候,单层网络能够保证是凸函数。
f(x)≈x: 当激活函数满足这个性质的时候,如果参数的初始化是random的很小的值,那么神经网络的训练将会很高效;如果不满足这个性质,那么就需要很用心的去设置初始值。
输出值的范围: 当激活函数输出值是有限的时候,基于梯度的优化方法会更加稳定,因为特征的表示受有限权值的影响更显著;当激活函数的输出是无限的时候,模型的训练会更加高效,不过在这种情况小,一般需要更小的learning rate.
这篇关于ReLU Sigmoid and Tanh的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!