个人笔记--python用tanh画圆形,正方形,长方形(epsilon界面宽度)

本文主要是介绍个人笔记--python用tanh画圆形,正方形,长方形(epsilon界面宽度),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

用tanh函数画图

圆形

在这里插入图片描述

import numpy as np
import matplotlib.pyplot as plt# 创建一个二维网格
xx = np.linspace(-1, 1, 1000)
yy = np.linspace(-1, 1, 1000)
x_i, y_i = np.meshgrid(xx, yy)# 圆的半径和中心
r = 0.4
center_x, center_y = 0, 0  # 假设圆心在(0, 0)# 计算每个网格点到圆心的距离
distance = np.sqrt((x_i - center_x) ** 2 + (y_i - center_y) ** 2)# 使用tanh函数来近似表示半圆区域
# 注意:tanh函数不能直接用于表示半圆,但我们可以通过设置阈值来近似表示
epsilon = 0.01 # 控制tanh函数的“陡峭度”
u0 = 0.5 * (1 + np.tanh((r - distance) / epsilon))
u0[distance > r] = -1  # 强制圆外的值为-1# 绘制结果
fig, ax = plt.subplots()
p = ax.pcolormesh(x_i, y_i, u0, cmap='viridis', shading='auto')
ax.set_aspect('equal', 'box')  # 保持x和y轴的比例相同
fig.colorbar(p, ax=ax, label='u0 Value')# 设置标题和坐标轴标签
plt.title('Approximate Half Circle using tanh')
plt.xlabel('X')
plt.ylabel('Y')# 显示图形
plt.show()

半圆

在这里插入图片描述

import numpy as np
import matplotlib.pyplot as plt# 创建一个二维网格
xx = np.linspace(-1, 1, 1000)
yy = np.linspace(-1, 1, 1000)
x_i, y_i = np.meshgrid(xx, yy)# 圆的半径和中心
r = 0.4
center_x, center_y = 0, -1  # 假设圆心在(0, -1)# 计算每个网格点到圆心的距离
distance = np.sqrt((x_i - center_x) ** 2 + (y_i - center_y) ** 2)# 使用tanh函数来近似表示半圆区域
# 注意:tanh函数不能直接用于表示半圆,但我们可以通过设置阈值来近似表示
epsilon = 0.01 # 控制tanh函数的“陡峭度”
u0 = 0.5 * (1 + np.tanh((r - distance) / epsilon))
u0[distance > r] = -1  # 强制圆外的值为-1# 绘制结果
fig, ax = plt.subplots()
p = ax.pcolormesh(x_i, y_i, u0, cmap='viridis', shading='auto')
ax.set_aspect('equal', 'box')  # 保持x和y轴的比例相同
fig.colorbar(p, ax=ax, label='u0 Value')# 设置标题和坐标轴标签
plt.title('Approximate Half Circle using tanh')
plt.xlabel('X')
plt.ylabel('Y')# 显示图形
plt.show()

两个圆形

在这里插入图片描述
在这里插入图片描述

import numpy as np
import matplotlib.pyplot as plt# 创建一个二维网格
xx = np.linspace(0, 1, 1000)
yy = np.linspace(0, 1, 1000)
x_i, y_i = np.meshgrid(xx, yy)# 圆的半径和中心
r1 = 0.15  # 如果要分开点,就设为0.14
r2 = 0.15  # 如果要分开点,就设为0.14
center_x1, center_y1 = 0.35, 0.5  # 圆心1
center_x2, center_y2 = 0.65, 0.5  # 圆心2# 计算每个网格点到圆心的距离
distance1 = np.sqrt((x_i - center_x1) ** 2 + (y_i - center_y1) ** 2)
distance2 = np.sqrt((x_i - center_x2) ** 2 + (y_i - center_y2) ** 2)# 使用tanh函数来近似表示半圆区域
# 注意:tanh函数不能直接用于表示半圆,但我们可以通设置阈值来近似表示
epsilon = 0.01 # 控制tanh函数的“陡峭度”
phi1 = np.tanh((r1 - distance1) / (2 * epsilon))
phi2 = np.tanh((r2 - distance2) / (2 * epsilon))u0 = np.maximum(phi1, phi2)
# u0 = 1 * (1 + phi1 + phi2)  # 两种都可以生成两个圆# 分别找出距离两个圆心都大于半径的点的索引
outside_circle1 = distance1 > r1
outside_circle2 = distance2 > r2# 使用逻辑与来找出两个条件都满足的点
outside_both_circles = np.logical_and(outside_circle1, outside_circle2)# 将这些点对应的u0值设置为-1
u0[outside_both_circles] = -1# 绘制结果
fig, ax = plt.subplots()
p = ax.pcolormesh(x_i, y_i, u0, cmap='viridis', shading='auto')
ax.set_aspect('equal', 'box')  # 保持x和y轴的比例相同
fig.colorbar(p, ax=ax, label='u0 Value')# 设置标题和坐标轴标签
plt.title('Approximate Half Circle using tanh')
plt.xlabel('X')
plt.ylabel('Y')# 显示图形
plt.show()

正方形(不带界面过渡)

在这里插入图片描述

import numpy as np
import matplotlib.pyplot as plt# 创建一个二维网格
xx = np.linspace(-1, 1, 1000)
yy = np.linspace(-1, 1, 1000)
x_i, y_i = np.meshgrid(xx, yy)# 正方形的中心和边长
center_x, center_y = 0, 0  # 假设正方形中心在(0, 0),为了简化计算
side_length = 0.5  # 正方形边长的一半# 使用tanh函数来近似正方形的四个边界
# 注意:这不是一个完美的正方形,只是一个近似
epsilon = 0.01  # 控制tanh函数的“陡峭度”# 近似上边界
u_top = 0.5 * (1 + np.tanh((side_length - np.abs(y_i - center_y)) / epsilon))
# 近似下边界
u_bottom = 0.5 * (1 + np.tanh((side_length - np.abs(y_i + center_y)) / epsilon))
# 近似左边界
u_left = 0.5 * (1 + np.tanh((side_length - np.abs(x_i - center_x)) / epsilon))
# 近似右边界
u_right = 0.5 * (1 + np.tanh((side_length - np.abs(x_i + center_x)) / epsilon))# 四个边界的交集(即正方形内部)应取得高值
u0 = np.minimum(np.minimum(u_top, u_bottom), np.minimum(u_left, u_right))
u0[u0 < 0.99] = -1  # 强制非正方形内部的值为-1(可调整阈值)
u0[u0 >= 0.99] = 1  # 强制正方形内部的值为1(可调整阈值)# 绘制结果
fig, ax = plt.subplots()
p = ax.pcolormesh(x_i, y_i, u0, cmap='viridis', shading='auto')
ax.set_aspect('equal', 'box')  # 保持x和y轴的比例相同
fig.colorbar(p, ax=ax, label='u0 Value')# 设置标题和坐标轴标签
plt.title('Approximate Square using tanh')
plt.xlabel('X')
plt.ylabel('Y')# 显示图形
plt.show()

长方形(不带界面过渡)

在这里插入图片描述

import numpy as np
import matplotlib.pyplot as plt# 创建一个二维网格
xx = np.linspace(-1, 1, 1000)
yy = np.linspace(-1, 1, 1000)
x_i, y_i = np.meshgrid(xx, yy)# 长方形的中心和尺寸
center_x, center_y = 0, 0  # 假设长方形中心在(0, 0)
width = 0.6  # 长方形的宽度
height = 0.4  # 长方形的高度
half_width = width / 2
half_height = height / 2# 使用tanh函数来近似长方形的四个边界
epsilon = 0.01  # 控制tanh函数的“陡峭度”# 近似上边界
u_top = 0.5 * (1 + np.tanh((half_height - (y_i - center_y)) / epsilon))
# 近似下边界
u_bottom = 0.5 * (1 + np.tanh((half_height - (center_y - y_i)) / epsilon))
# 近似左边界
u_left = 0.5 * (1 + np.tanh((half_width - (x_i - center_x)) / epsilon))
# 近似右边界
u_right = 0.5 * (1 + np.tanh((half_width - (center_x - x_i)) / epsilon))# 长方形的内部是四个边界的交集,取四个边界中的最小值
u0 = np.minimum.reduce([u_top, u_bottom, u_left, u_right])
u0[u0 < 0.99] = -1  # 强制非长方形内部的值为-1(可调整阈值)
u0[u0 >= 0.99] = 1  # 强制长方形内部的值为1(可调整阈值)# 绘制结果
fig, ax = plt.subplots()
p = ax.pcolormesh(x_i, y_i, u0, cmap='viridis', shading='auto')
ax.set_aspect('equal', 'box')  # 保持x和y轴的比例相同
fig.colorbar(p, ax=ax, label='u0 Value')# 设置标题和坐标轴标签
plt.title('Approximate Rectangle using tanh')
plt.xlabel('X')
plt.ylabel('Y')# 显示图形
plt.show()

边界上的长方形(不带界面过渡)

在这里插入图片描述

import numpy as np
import matplotlib.pyplot as plt# 创建一个二维网格
xx = np.linspace(-0.5, 0.5, 1000)
yy = np.linspace(0, 0.5, 1000)
x_i, y_i = np.meshgrid(xx, yy)# 长方形的中心和尺寸
center_x, center_y = 0, 0.0625  # 假设长方形中心在(0, 0)
width = 0.5  # 长方形的宽度(长)
height = 0.125  # 长方形的高度
half_width = width / 2
half_height = height / 2# 使用tanh函数来近似长方形的四个边界
epsilon = 0.01  # 控制tanh函数的“陡峭度”# 近似上边界
u_top = 1 * (1 + np.tanh((half_height - (y_i - center_y)) / epsilon))
# 近似下边界
u_bottom = 1 * (1 + np.tanh((half_height - (center_y - y_i)) / epsilon))
# 近似左边界
u_left = 1 * (1 + np.tanh((half_width - (x_i - center_x)) / epsilon))
# 近似右边界
u_right = 1 * (1 + np.tanh((half_width - (center_x - x_i)) / epsilon))# 长方形的内部是四个边界的交集,取四个边界中的最小值
u0 = np.minimum.reduce([u_top, u_bottom, u_left, u_right])
u0[u0 < 0.99] = -1  # 强制非长方形内部的值为-1(可调整阈值)
u0[u0 >= 0.99] = 1  # 强制长方形内部的值为1(可调整阈值)# # 绘制结果
# fig, ax = plt.subplots()
# p = ax.pcolormesh(x_i, y_i, u0, cmap='viridis', shading='auto')
# ax.set_aspect('equal', 'box')  # 保持x和y轴的比例相同
# fig.colorbar(p, ax=ax, label='u0 Value')
#
# # 设置标题和坐标轴标签
# plt.title('Approximate Rectangle using tanh')
# plt.xlabel('X')
# plt.ylabel('Y')
#
# # 显示图形
# plt.grid()
# plt.show()# 估算角点位置(这里只是估算,不是精确值)
# 左上角
x_left_top, y_left_top = center_x - half_width, center_y + half_height
# 右上角
x_right_top, y_right_top = center_x + half_width, center_y + half_height
# 左下角
x_left_bottom, y_left_bottom = center_x - half_width, center_y - half_height
# 右下角
x_right_bottom, y_right_bottom = center_x + half_width, center_y - half_height# 绘制结果
fig, ax = plt.subplots()
p = ax.pcolormesh(x_i, y_i, u0, cmap='viridis', shading='auto')
ax.set_aspect('equal', 'box')  # 保持x和y轴的比例相同
fig.colorbar(p, ax=ax, label='u0 Value')# 设置标题和坐标轴标签
plt.title('Approximate Rectangle using tanh')
plt.xlabel('X')
plt.ylabel('Y')# 显示长方形四个角的坐标数字
plt.text(x_left_top, y_left_top, f'({x_left_top:.2f}, {y_left_top:.2f})', va='top', ha='right', color='red')
plt.text(x_right_top, y_right_top, f'({x_right_top:.2f}, {y_right_top:.2f})', va='top', ha='left', color='red')
plt.text(x_left_bottom, y_left_bottom, f'({x_left_bottom:.2f}, {y_left_bottom:.2f})', va='bottom', ha='right', color='red')
plt.text(x_right_bottom, y_right_bottom, f'({x_right_bottom:.2f}, {y_right_bottom:.2f})', va='bottom', ha='left', color='red')# 显示网格和图形
plt.grid()
plt.show()

边界上的长方形(带界面宽度)

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

import numpy as np
import matplotlib.pyplot as plt# 创建一个二维网格
xx = np.linspace(-0.5, 0.5, 1000)
yy = np.linspace(0, 0.5, 1000)
x_i, y_i = np.meshgrid(xx, yy)# 长方形的中心和尺寸
center_x, center_y = 0, 0.0625  # 长方形中心
width = 0.5  # 长方形的宽度(长)
height = 0.125  # 长方形的高度
half_width = width / 2
half_height = height / 2# 使用tanh函数来近似长方形的四个边界
epsilon = 0.01  # 控制tanh函数的“陡峭度”# 近似上边界
u_top = np.tanh((half_height - (y_i - center_y)) / (2 * epsilon))
# # 近似下边界
# u_bottom = np.tanh((half_height - (center_y - y_i)) / (2 * epsilon))
u_bottom = np.ones((1000, 1000))
# 近似左边界
u_left = np.tanh((half_width - (x_i - center_x)) / (2 * epsilon))
# 近似右边界
u_right = np.tanh((half_width - (center_x - x_i)) / (2 * epsilon))# 长方形的内部是四个边界的交集,取四个边界中的最小值
u0 = np.minimum.reduce([u_top, u_bottom, u_left, u_right])# # 绘制结果
fig, ax = plt.subplots()
p = ax.pcolormesh(x_i, y_i, u0, cmap='viridis', shading='auto')
ax.set_aspect('equal', 'box')  # 保持x和y轴的比例相同
fig.colorbar(p, ax=ax, label='u0 Value')# 设置标题和坐标轴标签
plt.title('Approximate Rectangle using tanh')
plt.xlabel('X')
plt.ylabel('Y')# 显示图形
plt.grid()
plt.show()

这篇关于个人笔记--python用tanh画圆形,正方形,长方形(epsilon界面宽度)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1028729

相关文章

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

Python Jupyter Notebook导包报错问题及解决

《PythonJupyterNotebook导包报错问题及解决》在conda环境中安装包后,JupyterNotebook导入时出现ImportError,可能是由于包版本不对应或版本太高,解决方... 目录问题解决方法重新安装Jupyter NoteBook 更改Kernel总结问题在conda上安装了

Python如何计算两个不同类型列表的相似度

《Python如何计算两个不同类型列表的相似度》在编程中,经常需要比较两个列表的相似度,尤其是当这两个列表包含不同类型的元素时,下面小编就来讲讲如何使用Python计算两个不同类型列表的相似度吧... 目录摘要引言数字类型相似度欧几里得距离曼哈顿距离字符串类型相似度Levenshtein距离Jaccard相

Python安装时常见报错以及解决方案

《Python安装时常见报错以及解决方案》:本文主要介绍在安装Python、配置环境变量、使用pip以及运行Python脚本时常见的错误及其解决方案,文中介绍的非常详细,需要的朋友可以参考下... 目录一、安装 python 时常见报错及解决方案(一)安装包下载失败(二)权限不足二、配置环境变量时常见报错及

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(

Python itertools中accumulate函数用法及使用运用详细讲解

《Pythonitertools中accumulate函数用法及使用运用详细讲解》:本文主要介绍Python的itertools库中的accumulate函数,该函数可以计算累积和或通过指定函数... 目录1.1前言:1.2定义:1.3衍生用法:1.3Leetcode的实际运用:总结 1.1前言:本文将详

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操