个人笔记--python用tanh画圆形,正方形,长方形(epsilon界面宽度)

本文主要是介绍个人笔记--python用tanh画圆形,正方形,长方形(epsilon界面宽度),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

用tanh函数画图

圆形

在这里插入图片描述

import numpy as np
import matplotlib.pyplot as plt# 创建一个二维网格
xx = np.linspace(-1, 1, 1000)
yy = np.linspace(-1, 1, 1000)
x_i, y_i = np.meshgrid(xx, yy)# 圆的半径和中心
r = 0.4
center_x, center_y = 0, 0  # 假设圆心在(0, 0)# 计算每个网格点到圆心的距离
distance = np.sqrt((x_i - center_x) ** 2 + (y_i - center_y) ** 2)# 使用tanh函数来近似表示半圆区域
# 注意:tanh函数不能直接用于表示半圆,但我们可以通过设置阈值来近似表示
epsilon = 0.01 # 控制tanh函数的“陡峭度”
u0 = 0.5 * (1 + np.tanh((r - distance) / epsilon))
u0[distance > r] = -1  # 强制圆外的值为-1# 绘制结果
fig, ax = plt.subplots()
p = ax.pcolormesh(x_i, y_i, u0, cmap='viridis', shading='auto')
ax.set_aspect('equal', 'box')  # 保持x和y轴的比例相同
fig.colorbar(p, ax=ax, label='u0 Value')# 设置标题和坐标轴标签
plt.title('Approximate Half Circle using tanh')
plt.xlabel('X')
plt.ylabel('Y')# 显示图形
plt.show()

半圆

在这里插入图片描述

import numpy as np
import matplotlib.pyplot as plt# 创建一个二维网格
xx = np.linspace(-1, 1, 1000)
yy = np.linspace(-1, 1, 1000)
x_i, y_i = np.meshgrid(xx, yy)# 圆的半径和中心
r = 0.4
center_x, center_y = 0, -1  # 假设圆心在(0, -1)# 计算每个网格点到圆心的距离
distance = np.sqrt((x_i - center_x) ** 2 + (y_i - center_y) ** 2)# 使用tanh函数来近似表示半圆区域
# 注意:tanh函数不能直接用于表示半圆,但我们可以通过设置阈值来近似表示
epsilon = 0.01 # 控制tanh函数的“陡峭度”
u0 = 0.5 * (1 + np.tanh((r - distance) / epsilon))
u0[distance > r] = -1  # 强制圆外的值为-1# 绘制结果
fig, ax = plt.subplots()
p = ax.pcolormesh(x_i, y_i, u0, cmap='viridis', shading='auto')
ax.set_aspect('equal', 'box')  # 保持x和y轴的比例相同
fig.colorbar(p, ax=ax, label='u0 Value')# 设置标题和坐标轴标签
plt.title('Approximate Half Circle using tanh')
plt.xlabel('X')
plt.ylabel('Y')# 显示图形
plt.show()

两个圆形

在这里插入图片描述
在这里插入图片描述

import numpy as np
import matplotlib.pyplot as plt# 创建一个二维网格
xx = np.linspace(0, 1, 1000)
yy = np.linspace(0, 1, 1000)
x_i, y_i = np.meshgrid(xx, yy)# 圆的半径和中心
r1 = 0.15  # 如果要分开点,就设为0.14
r2 = 0.15  # 如果要分开点,就设为0.14
center_x1, center_y1 = 0.35, 0.5  # 圆心1
center_x2, center_y2 = 0.65, 0.5  # 圆心2# 计算每个网格点到圆心的距离
distance1 = np.sqrt((x_i - center_x1) ** 2 + (y_i - center_y1) ** 2)
distance2 = np.sqrt((x_i - center_x2) ** 2 + (y_i - center_y2) ** 2)# 使用tanh函数来近似表示半圆区域
# 注意:tanh函数不能直接用于表示半圆,但我们可以通设置阈值来近似表示
epsilon = 0.01 # 控制tanh函数的“陡峭度”
phi1 = np.tanh((r1 - distance1) / (2 * epsilon))
phi2 = np.tanh((r2 - distance2) / (2 * epsilon))u0 = np.maximum(phi1, phi2)
# u0 = 1 * (1 + phi1 + phi2)  # 两种都可以生成两个圆# 分别找出距离两个圆心都大于半径的点的索引
outside_circle1 = distance1 > r1
outside_circle2 = distance2 > r2# 使用逻辑与来找出两个条件都满足的点
outside_both_circles = np.logical_and(outside_circle1, outside_circle2)# 将这些点对应的u0值设置为-1
u0[outside_both_circles] = -1# 绘制结果
fig, ax = plt.subplots()
p = ax.pcolormesh(x_i, y_i, u0, cmap='viridis', shading='auto')
ax.set_aspect('equal', 'box')  # 保持x和y轴的比例相同
fig.colorbar(p, ax=ax, label='u0 Value')# 设置标题和坐标轴标签
plt.title('Approximate Half Circle using tanh')
plt.xlabel('X')
plt.ylabel('Y')# 显示图形
plt.show()

正方形(不带界面过渡)

在这里插入图片描述

import numpy as np
import matplotlib.pyplot as plt# 创建一个二维网格
xx = np.linspace(-1, 1, 1000)
yy = np.linspace(-1, 1, 1000)
x_i, y_i = np.meshgrid(xx, yy)# 正方形的中心和边长
center_x, center_y = 0, 0  # 假设正方形中心在(0, 0),为了简化计算
side_length = 0.5  # 正方形边长的一半# 使用tanh函数来近似正方形的四个边界
# 注意:这不是一个完美的正方形,只是一个近似
epsilon = 0.01  # 控制tanh函数的“陡峭度”# 近似上边界
u_top = 0.5 * (1 + np.tanh((side_length - np.abs(y_i - center_y)) / epsilon))
# 近似下边界
u_bottom = 0.5 * (1 + np.tanh((side_length - np.abs(y_i + center_y)) / epsilon))
# 近似左边界
u_left = 0.5 * (1 + np.tanh((side_length - np.abs(x_i - center_x)) / epsilon))
# 近似右边界
u_right = 0.5 * (1 + np.tanh((side_length - np.abs(x_i + center_x)) / epsilon))# 四个边界的交集(即正方形内部)应取得高值
u0 = np.minimum(np.minimum(u_top, u_bottom), np.minimum(u_left, u_right))
u0[u0 < 0.99] = -1  # 强制非正方形内部的值为-1(可调整阈值)
u0[u0 >= 0.99] = 1  # 强制正方形内部的值为1(可调整阈值)# 绘制结果
fig, ax = plt.subplots()
p = ax.pcolormesh(x_i, y_i, u0, cmap='viridis', shading='auto')
ax.set_aspect('equal', 'box')  # 保持x和y轴的比例相同
fig.colorbar(p, ax=ax, label='u0 Value')# 设置标题和坐标轴标签
plt.title('Approximate Square using tanh')
plt.xlabel('X')
plt.ylabel('Y')# 显示图形
plt.show()

长方形(不带界面过渡)

在这里插入图片描述

import numpy as np
import matplotlib.pyplot as plt# 创建一个二维网格
xx = np.linspace(-1, 1, 1000)
yy = np.linspace(-1, 1, 1000)
x_i, y_i = np.meshgrid(xx, yy)# 长方形的中心和尺寸
center_x, center_y = 0, 0  # 假设长方形中心在(0, 0)
width = 0.6  # 长方形的宽度
height = 0.4  # 长方形的高度
half_width = width / 2
half_height = height / 2# 使用tanh函数来近似长方形的四个边界
epsilon = 0.01  # 控制tanh函数的“陡峭度”# 近似上边界
u_top = 0.5 * (1 + np.tanh((half_height - (y_i - center_y)) / epsilon))
# 近似下边界
u_bottom = 0.5 * (1 + np.tanh((half_height - (center_y - y_i)) / epsilon))
# 近似左边界
u_left = 0.5 * (1 + np.tanh((half_width - (x_i - center_x)) / epsilon))
# 近似右边界
u_right = 0.5 * (1 + np.tanh((half_width - (center_x - x_i)) / epsilon))# 长方形的内部是四个边界的交集,取四个边界中的最小值
u0 = np.minimum.reduce([u_top, u_bottom, u_left, u_right])
u0[u0 < 0.99] = -1  # 强制非长方形内部的值为-1(可调整阈值)
u0[u0 >= 0.99] = 1  # 强制长方形内部的值为1(可调整阈值)# 绘制结果
fig, ax = plt.subplots()
p = ax.pcolormesh(x_i, y_i, u0, cmap='viridis', shading='auto')
ax.set_aspect('equal', 'box')  # 保持x和y轴的比例相同
fig.colorbar(p, ax=ax, label='u0 Value')# 设置标题和坐标轴标签
plt.title('Approximate Rectangle using tanh')
plt.xlabel('X')
plt.ylabel('Y')# 显示图形
plt.show()

边界上的长方形(不带界面过渡)

在这里插入图片描述

import numpy as np
import matplotlib.pyplot as plt# 创建一个二维网格
xx = np.linspace(-0.5, 0.5, 1000)
yy = np.linspace(0, 0.5, 1000)
x_i, y_i = np.meshgrid(xx, yy)# 长方形的中心和尺寸
center_x, center_y = 0, 0.0625  # 假设长方形中心在(0, 0)
width = 0.5  # 长方形的宽度(长)
height = 0.125  # 长方形的高度
half_width = width / 2
half_height = height / 2# 使用tanh函数来近似长方形的四个边界
epsilon = 0.01  # 控制tanh函数的“陡峭度”# 近似上边界
u_top = 1 * (1 + np.tanh((half_height - (y_i - center_y)) / epsilon))
# 近似下边界
u_bottom = 1 * (1 + np.tanh((half_height - (center_y - y_i)) / epsilon))
# 近似左边界
u_left = 1 * (1 + np.tanh((half_width - (x_i - center_x)) / epsilon))
# 近似右边界
u_right = 1 * (1 + np.tanh((half_width - (center_x - x_i)) / epsilon))# 长方形的内部是四个边界的交集,取四个边界中的最小值
u0 = np.minimum.reduce([u_top, u_bottom, u_left, u_right])
u0[u0 < 0.99] = -1  # 强制非长方形内部的值为-1(可调整阈值)
u0[u0 >= 0.99] = 1  # 强制长方形内部的值为1(可调整阈值)# # 绘制结果
# fig, ax = plt.subplots()
# p = ax.pcolormesh(x_i, y_i, u0, cmap='viridis', shading='auto')
# ax.set_aspect('equal', 'box')  # 保持x和y轴的比例相同
# fig.colorbar(p, ax=ax, label='u0 Value')
#
# # 设置标题和坐标轴标签
# plt.title('Approximate Rectangle using tanh')
# plt.xlabel('X')
# plt.ylabel('Y')
#
# # 显示图形
# plt.grid()
# plt.show()# 估算角点位置(这里只是估算,不是精确值)
# 左上角
x_left_top, y_left_top = center_x - half_width, center_y + half_height
# 右上角
x_right_top, y_right_top = center_x + half_width, center_y + half_height
# 左下角
x_left_bottom, y_left_bottom = center_x - half_width, center_y - half_height
# 右下角
x_right_bottom, y_right_bottom = center_x + half_width, center_y - half_height# 绘制结果
fig, ax = plt.subplots()
p = ax.pcolormesh(x_i, y_i, u0, cmap='viridis', shading='auto')
ax.set_aspect('equal', 'box')  # 保持x和y轴的比例相同
fig.colorbar(p, ax=ax, label='u0 Value')# 设置标题和坐标轴标签
plt.title('Approximate Rectangle using tanh')
plt.xlabel('X')
plt.ylabel('Y')# 显示长方形四个角的坐标数字
plt.text(x_left_top, y_left_top, f'({x_left_top:.2f}, {y_left_top:.2f})', va='top', ha='right', color='red')
plt.text(x_right_top, y_right_top, f'({x_right_top:.2f}, {y_right_top:.2f})', va='top', ha='left', color='red')
plt.text(x_left_bottom, y_left_bottom, f'({x_left_bottom:.2f}, {y_left_bottom:.2f})', va='bottom', ha='right', color='red')
plt.text(x_right_bottom, y_right_bottom, f'({x_right_bottom:.2f}, {y_right_bottom:.2f})', va='bottom', ha='left', color='red')# 显示网格和图形
plt.grid()
plt.show()

边界上的长方形(带界面宽度)

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

import numpy as np
import matplotlib.pyplot as plt# 创建一个二维网格
xx = np.linspace(-0.5, 0.5, 1000)
yy = np.linspace(0, 0.5, 1000)
x_i, y_i = np.meshgrid(xx, yy)# 长方形的中心和尺寸
center_x, center_y = 0, 0.0625  # 长方形中心
width = 0.5  # 长方形的宽度(长)
height = 0.125  # 长方形的高度
half_width = width / 2
half_height = height / 2# 使用tanh函数来近似长方形的四个边界
epsilon = 0.01  # 控制tanh函数的“陡峭度”# 近似上边界
u_top = np.tanh((half_height - (y_i - center_y)) / (2 * epsilon))
# # 近似下边界
# u_bottom = np.tanh((half_height - (center_y - y_i)) / (2 * epsilon))
u_bottom = np.ones((1000, 1000))
# 近似左边界
u_left = np.tanh((half_width - (x_i - center_x)) / (2 * epsilon))
# 近似右边界
u_right = np.tanh((half_width - (center_x - x_i)) / (2 * epsilon))# 长方形的内部是四个边界的交集,取四个边界中的最小值
u0 = np.minimum.reduce([u_top, u_bottom, u_left, u_right])# # 绘制结果
fig, ax = plt.subplots()
p = ax.pcolormesh(x_i, y_i, u0, cmap='viridis', shading='auto')
ax.set_aspect('equal', 'box')  # 保持x和y轴的比例相同
fig.colorbar(p, ax=ax, label='u0 Value')# 设置标题和坐标轴标签
plt.title('Approximate Rectangle using tanh')
plt.xlabel('X')
plt.ylabel('Y')# 显示图形
plt.grid()
plt.show()

这篇关于个人笔记--python用tanh画圆形,正方形,长方形(epsilon界面宽度)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1028729

相关文章

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

nudepy,一个有趣的 Python 库!

更多资料获取 📚 个人网站:ipengtao.com 大家好,今天为大家分享一个有趣的 Python 库 - nudepy。 Github地址:https://github.com/hhatto/nude.py 在图像处理和计算机视觉应用中,检测图像中的不适当内容(例如裸露图像)是一个重要的任务。nudepy 是一个基于 Python 的库,专门用于检测图像中的不适当内容。该

pip-tools:打造可重复、可控的 Python 开发环境,解决依赖关系,让代码更稳定

在 Python 开发中,管理依赖关系是一项繁琐且容易出错的任务。手动更新依赖版本、处理冲突、确保一致性等等,都可能让开发者感到头疼。而 pip-tools 为开发者提供了一套稳定可靠的解决方案。 什么是 pip-tools? pip-tools 是一组命令行工具,旨在简化 Python 依赖关系的管理,确保项目环境的稳定性和可重复性。它主要包含两个核心工具:pip-compile 和 pip

HTML提交表单给python

python 代码 from flask import Flask, request, render_template, redirect, url_forapp = Flask(__name__)@app.route('/')def form():# 渲染表单页面return render_template('./index.html')@app.route('/submit_form',

论文阅读笔记: Segment Anything

文章目录 Segment Anything摘要引言任务模型数据引擎数据集负责任的人工智能 Segment Anything Model图像编码器提示编码器mask解码器解决歧义损失和训练 Segment Anything 论文地址: https://arxiv.org/abs/2304.02643 代码地址:https://github.com/facebookresear

数学建模笔记—— 非线性规划

数学建模笔记—— 非线性规划 非线性规划1. 模型原理1.1 非线性规划的标准型1.2 非线性规划求解的Matlab函数 2. 典型例题3. matlab代码求解3.1 例1 一个简单示例3.2 例2 选址问题1. 第一问 线性规划2. 第二问 非线性规划 非线性规划 非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。2