数学基础 -- 均方误差(Mean Squared Error, MSE)与交叉熵(Cross-Entropy)的数学原理

本文主要是介绍数学基础 -- 均方误差(Mean Squared Error, MSE)与交叉熵(Cross-Entropy)的数学原理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

均方误差(Mean Squared Error, MSE)与交叉熵(Cross-Entropy)的数学原理

1. 均方误差(Mean Squared Error, MSE)

均方误差主要用于回归问题,度量预测值与实际值之间的平均平方差。其数学公式为:

MSE = 1 n ∑ i = 1 n ( y i − y ^ i ) 2 \text{MSE} = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 MSE=n1i=1n(yiy^i)2

  • n n n:样本数量。
  • y i y_i yi:实际值。
  • y ^ i \hat{y}_i y^i:预测值。

原理:

  1. 误差:首先计算每个样本的预测值与实际值之间的差,即 y i − y ^ i y_i - \hat{y}_i yiy^i
  2. 平方:将误差进行平方,这样可以避免正负误差相互抵消,也使得较大的误差权重更大。
  3. 平均:对所有样本的平方误差求平均值,以获得整体的误差。

均方误差的值越小,说明模型的预测结果越接近实际值。由于平方的原因,MSE 对异常值(outliers)较为敏感。

2. 交叉熵(Cross-Entropy)

交叉熵损失函数通常用于分类问题,度量两个概率分布之间的差异。其数学公式根据任务的不同,分为二分类交叉熵多分类交叉熵

二分类交叉熵损失

在二分类问题中,假设输出结果为类别 y ∈ { 0 , 1 } y \in \{0, 1\} y{0,1},预测值为 y ^ \hat{y} y^,则交叉熵损失的公式为:

Binary Cross-Entropy = − 1 n ∑ i = 1 n [ y i ⋅ log ⁡ ( y ^ i ) + ( 1 − y i ) ⋅ log ⁡ ( 1 − y ^ i ) ] \text{Binary Cross-Entropy} = -\frac{1}{n} \sum_{i=1}^{n} \left[ y_i \cdot \log(\hat{y}_i) + (1 - y_i) \cdot \log(1 - \hat{y}_i) \right] Binary Cross-Entropy=n1i=1n[yilog(y^i)+(1yi)log(1y^i)]

  • y i y_i yi:实际类别标签(0 或 1)。
  • y ^ i \hat{y}_i y^i:模型输出的预测概率。

多分类交叉熵损失

在多分类问题中,假设类别有 k k k 个,模型输出为一个概率分布 y ^ i = [ y ^ i 1 , y ^ i 2 , … , y ^ i k ] \hat{y}_i = [\hat{y}_{i1}, \hat{y}_{i2}, \dots, \hat{y}_{ik}] y^i=[y^i1,y^i2,,y^ik],则多分类交叉熵损失的公式为:

Categorical Cross-Entropy = − 1 n ∑ i = 1 n ∑ j = 1 k y i j ⋅ log ⁡ ( y ^ i j ) \text{Categorical Cross-Entropy} = -\frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{k} y_{ij} \cdot \log(\hat{y}_{ij}) Categorical Cross-Entropy=n1i=1nj=1kyijlog(y^ij)

  • y i j y_{ij} yij:实际类别的 one-hot 编码表示,即如果样本 i i i 属于类别 j j j,则 y i j = 1 y_{ij} = 1 yij=1,否则 y i j = 0 y_{ij} = 0 yij=0
  • y ^ i j \hat{y}_{ij} y^ij:模型输出的预测概率,表示样本 i i i 属于类别 j j j 的概率。

原理:

  1. 信息熵:交叉熵源于信息论中的“熵”概念,表示一个概率分布与目标分布之间的不确定性。熵越大,模型的预测结果越不确定。
  2. 对数函数:使用对数函数是为了惩罚模型对于实际类别的错误预测,对数值越接近0,损失越大。
  3. 求和:交叉熵通过对所有样本和类别求和,得出整体的损失值。

交叉熵损失函数在分类问题中非常常用,因为它直接与概率相关,能够准确反映模型对分类任务的表现。交叉熵越小,说明模型预测的概率分布与实际类别分布越接近。

这篇关于数学基础 -- 均方误差(Mean Squared Error, MSE)与交叉熵(Cross-Entropy)的数学原理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1104527

相关文章

从基础到进阶详解Pandas时间数据处理指南

《从基础到进阶详解Pandas时间数据处理指南》Pandas构建了完整的时间数据处理生态,核心由四个基础类构成,Timestamp,DatetimeIndex,Period和Timedelta,下面我... 目录1. 时间数据类型与基础操作1.1 核心时间对象体系1.2 时间数据生成技巧2. 时间索引与数据

安装centos8设置基础软件仓库时出错的解决方案

《安装centos8设置基础软件仓库时出错的解决方案》:本文主要介绍安装centos8设置基础软件仓库时出错的解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录安装Centos8设置基础软件仓库时出错版本 8版本 8.2.200android4版本 javas

Linux基础命令@grep、wc、管道符的使用详解

《Linux基础命令@grep、wc、管道符的使用详解》:本文主要介绍Linux基础命令@grep、wc、管道符的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录grep概念语法作用演示一演示二演示三,带选项 -nwc概念语法作用wc,不带选项-c,统计字节数-

python操作redis基础

《python操作redis基础》Redis(RemoteDictionaryServer)是一个开源的、基于内存的键值对(Key-Value)存储系统,它通常用作数据库、缓存和消息代理,这篇文章... 目录1. Redis 简介2. 前提条件3. 安装 python Redis 客户端库4. 连接到 Re

SpringBoot基础框架详解

《SpringBoot基础框架详解》SpringBoot开发目的是为了简化Spring应用的创建、运行、调试和部署等,使用SpringBoot可以不用或者只需要很少的Spring配置就可以让企业项目快... 目录SpringBoot基础 – 框架介绍1.SpringBoot介绍1.1 概述1.2 核心功能2

Spring Boot集成SLF4j从基础到高级实践(最新推荐)

《SpringBoot集成SLF4j从基础到高级实践(最新推荐)》SLF4j(SimpleLoggingFacadeforJava)是一个日志门面(Facade),不是具体的日志实现,这篇文章主要介... 目录一、日志框架概述与SLF4j简介1.1 为什么需要日志框架1.2 主流日志框架对比1.3 SLF4

Spring Boot集成Logback终极指南之从基础到高级配置实战指南

《SpringBoot集成Logback终极指南之从基础到高级配置实战指南》Logback是一个可靠、通用且快速的Java日志框架,作为Log4j的继承者,由Log4j创始人设计,:本文主要介绍... 目录一、Logback简介与Spring Boot集成基础1.1 Logback是什么?1.2 Sprin

Android NDK版本迭代与FFmpeg交叉编译完全指南

《AndroidNDK版本迭代与FFmpeg交叉编译完全指南》在Android开发中,使用NDK进行原生代码开发是一项常见需求,特别是当我们需要集成FFmpeg这样的多媒体处理库时,本文将深入分析A... 目录一、android NDK版本迭代分界线二、FFmpeg交叉编译关键注意事项三、完整编译脚本示例四

MySQL复合查询从基础到多表关联与高级技巧全解析

《MySQL复合查询从基础到多表关联与高级技巧全解析》本文主要讲解了在MySQL中的复合查询,下面是关于本文章所需要数据的建表语句,感兴趣的朋友跟随小编一起看看吧... 目录前言:1.基本查询回顾:1.1.查询工资高于500或岗位为MANAGER的雇员,同时还要满足他们的姓名首字母为大写的J1.2.按照部门

Android Mainline基础简介

《AndroidMainline基础简介》AndroidMainline是通过模块化更新Android核心组件的框架,可能提高安全性,本文给大家介绍AndroidMainline基础简介,感兴趣的朋... 目录关键要点什么是 android Mainline?Android Mainline 的工作原理关键