均方误差(Mean Squared Error, MSE)与交叉熵(Cross-Entropy)的数学原理 1. 均方误差(Mean Squared Error, MSE) 均方误差主要用于回归问题,度量预测值与实际值之间的平均平方差。其数学公式为: MSE = 1 n ∑ i = 1 n ( y i − y ^ i ) 2 \text{MSE} = \frac{1}{n} \sum_{i
文章目录 nn.MSELoss() 均方误差损失函数参数数学公式元素版本 要点附录 参考链接 nn.MSELoss() 均方误差损失函数 torch.nn.MSELoss(size_average=None, reduce=None, reduction='mean') Creates a criterion that measures the mean squared err
对线性回归模型系数标准差标准误的理解 1.生成数据 yxe3.610.633.42-1.387.631.017.44-1.0111.651.3811.46-0.63 2.回归 y = β 0 + β 1 x + ϵ y = \beta_{0}+\beta_{1}x+\epsilon y=β0+β1x+ϵ y i = β 0 + β 1 x i + e i y_{i}=\bet