机器学习 从矩阵和概率的角度解释最小均方误差函数

2023-12-05 12:08

本文主要是介绍机器学习 从矩阵和概率的角度解释最小均方误差函数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最小均方误差函数

之前的讲义里, 我们提到了最小均方误差函数,给出一组有 m 个样本的训练集,我们希望找到合适的参数 θ, 使得预测值 hθ(x) 与目标值尽可能接近。为了估计参数 θ , 我们定义如下的 cost function:

J(θ)=12i=1m(hθ(xi)yi)2

这个 cost function 就是最小均方误差函数,第一讲里面,我们用梯度下降算法估计参数 θ , 而第二讲里面我们提到了矩阵的基本运算及矩阵的求导,现在就从矩阵的角度求参数 θ 的解析解。

矩阵的解析解

给定一组训练样本, D={(xi,yi)|xiRn,yiR}mi=1 , xi 是维数为 n 的输入特征(默认为列向量),yi 是连续的实数值, m 表示样本数,则输入特征可以用矩阵表示为:

X=[x1,x2,,xm]T

输出变量可以用一个向量表示为:

y=[y1,y2,,ym]T

而我们从第一讲已经知道, hθ(xi)=xTiθ , 则我们可以得到如下的表达式:
Xθy=xT1θxTmθy1ym=hθ(x1)y1hθ(xm)ym

则最小均方误差函数可以表示为:
J(θ)=12i=1m(hθ(xi)yi)2=12(Xθy)T(Xθy)

利用第二讲的矩阵基本运算将上式展开,可以得到:
J(θ)=12θTXTXθθTXTyyTXθ+yTy

利用第二讲的矩阵求导,可以得到 J(θ) θ 的偏导数为:
J(θ)θ=12(XTXθ+XTXθ2XTy)=XTXθXTy

令该偏导数为0,则可以得到:
XTXθ=XTy

最终可以得到参数 θ 的解析解为:
θ=(XTX)1XTy

如果矩阵 (XTX)1 可逆,则该解就是全局最优解,有的时候,该矩阵不一定可逆,就是我们常常遇到的样本数远远大于参数的个数即 mn ,那么参数 θ 就只能得到近似解。

从最大似然估计到最小均方误差

有的时候我们会考虑,在做回归问题的时候,为什么用最小均方误差函数作为 \textbf{cost function}, 为什么不用其它的函数。接下来,我们从概率分布的角度去考虑这个问题,随后我们会发现,最小均方误差函数从某种意义上来说,
是从最大似然估计中演化出来的。
我们先假设目标值与输入变量之间存在以下关系:

yi=θTxi+ϵi

其中, ϵi 是一个误差项,表示由于一些我们没有考虑到的因素导致估计值域目标值之间出现得偏差,我们进一步假设这些误差项是
独立同分布的(independently and identically distributed), 并且是均值为0,方差为 σ2 的高斯分布(这是自然界非常常见的一种分布)。我们可以表示为
ϵiN(0,σ2) , 其概率密度函数为:
p(ϵi)=12πσexp(ϵ2i2σ2)

将式代入,可以得到:
p(yi|xi;θ)=12πσexp((yiθTxi)22σ2)

这里需要注意, p(yi|xi;θ) 表示的是 yi xi 的条件概率, θ 是参数, xi 是随机变量,两者之间用 ";" 隔开,不能用
"," 隔开。当我们考虑所有的样本时,则所有的输出变量的分布表示为: p(y|X;θ) , 我们可以建立一个关于参数 θ 的似然函数:
L(θ)=L(θ;X,y)=p(y|X;θ)

因为 ϵi 是独立同分布的,我们可以得到:
L(θ)=i=1mp(yi|xi;θ)=i=1m12πσexp((yiθTxi)22σ2)

最大似然估计原则告诉我们,要选择参数 θ 使得概率要尽可能地高。所以我们可以建立如下的优化函数:
maxθ[i=1m12πσexp((yiθTxi)22σ2)]

上式是一个单调函数,根据单调函数的传递性原则,我们可以对上式取对数,则可以得到:
l(θ)=log(L(θ))=logi=1m12πσexp((yiθTxi)22σ2)=i=1mlog12πσexp((yiθTxi)22σ2)=mlog12πσ1σ212i=1m(yiθTxi)2

因此,要使上式最大化,则只要使其中的二次项最小化,即
minθ12i=1m(hθ(xi)yi)2

我们可以看到,从概率出发,最小均方误差是最大似然估计非常自然的一种延伸,两者最后可以完美的统一起来。

参考文献

Andrew Ng, “Machine Learning”, Stanford University.

这篇关于机器学习 从矩阵和概率的角度解释最小均方误差函数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/457509

相关文章

Kotlin 作用域函数apply、let、run、with、also使用指南

《Kotlin作用域函数apply、let、run、with、also使用指南》在Kotlin开发中,作用域函数(ScopeFunctions)是一组能让代码更简洁、更函数式的高阶函数,本文将... 目录一、引言:为什么需要作用域函数?二、作用域函China编程数详解1. apply:对象配置的 “流式构建器”最

Android Kotlin 高阶函数详解及其在协程中的应用小结

《AndroidKotlin高阶函数详解及其在协程中的应用小结》高阶函数是Kotlin中的一个重要特性,它能够将函数作为一等公民(First-ClassCitizen),使得代码更加简洁、灵活和可... 目录1. 引言2. 什么是高阶函数?3. 高阶函数的基础用法3.1 传递函数作为参数3.2 Lambda

C++中::SHCreateDirectoryEx函数使用方法

《C++中::SHCreateDirectoryEx函数使用方法》::SHCreateDirectoryEx用于创建多级目录,类似于mkdir-p命令,本文主要介绍了C++中::SHCreateDir... 目录1. 函数原型与依赖项2. 基本使用示例示例 1:创建单层目录示例 2:创建多级目录3. 关键注

C++中函数模板与类模板的简单使用及区别介绍

《C++中函数模板与类模板的简单使用及区别介绍》这篇文章介绍了C++中的模板机制,包括函数模板和类模板的概念、语法和实际应用,函数模板通过类型参数实现泛型操作,而类模板允许创建可处理多种数据类型的类,... 目录一、函数模板定义语法真实示例二、类模板三、关键区别四、注意事项 ‌在C++中,模板是实现泛型编程

kotlin的函数forEach示例详解

《kotlin的函数forEach示例详解》在Kotlin中,forEach是一个高阶函数,用于遍历集合中的每个元素并对其执行指定的操作,它的核心特点是简洁、函数式,适用于需要遍历集合且无需返回值的场... 目录一、基本用法1️⃣ 遍历集合2️⃣ 遍历数组3️⃣ 遍历 Map二、与 for 循环的区别三、高

C语言字符函数和字符串函数示例详解

《C语言字符函数和字符串函数示例详解》本文详细介绍了C语言中字符分类函数、字符转换函数及字符串操作函数的使用方法,并通过示例代码展示了如何实现这些功能,通过这些内容,读者可以深入理解并掌握C语言中的字... 目录一、字符分类函数二、字符转换函数三、strlen的使用和模拟实现3.1strlen函数3.2st

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx

MySQL中COALESCE函数示例详解

《MySQL中COALESCE函数示例详解》COALESCE是一个功能强大且常用的SQL函数,主要用来处理NULL值和实现灵活的值选择策略,能够使查询逻辑更清晰、简洁,:本文主要介绍MySQL中C... 目录语法示例1. 替换 NULL 值2. 用于字段默认值3. 多列优先级4. 结合聚合函数注意事项总结C

Java8需要知道的4个函数式接口简单教程

《Java8需要知道的4个函数式接口简单教程》:本文主要介绍Java8中引入的函数式接口,包括Consumer、Supplier、Predicate和Function,以及它们的用法和特点,文中... 目录什么是函数是接口?Consumer接口定义核心特点注意事项常见用法1.基本用法2.结合andThen链

MySQL 日期时间格式化函数 DATE_FORMAT() 的使用示例详解

《MySQL日期时间格式化函数DATE_FORMAT()的使用示例详解》`DATE_FORMAT()`是MySQL中用于格式化日期时间的函数,本文详细介绍了其语法、格式化字符串的含义以及常见日期... 目录一、DATE_FORMAT()语法二、格式化字符串详解三、常见日期时间格式组合四、业务场景五、总结一、