机器学习 从矩阵和概率的角度解释最小均方误差函数

2023-12-05 12:08

本文主要是介绍机器学习 从矩阵和概率的角度解释最小均方误差函数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最小均方误差函数

之前的讲义里, 我们提到了最小均方误差函数,给出一组有 m 个样本的训练集,我们希望找到合适的参数 θ, 使得预测值 hθ(x) 与目标值尽可能接近。为了估计参数 θ , 我们定义如下的 cost function:

J(θ)=12i=1m(hθ(xi)yi)2

这个 cost function 就是最小均方误差函数,第一讲里面,我们用梯度下降算法估计参数 θ , 而第二讲里面我们提到了矩阵的基本运算及矩阵的求导,现在就从矩阵的角度求参数 θ 的解析解。

矩阵的解析解

给定一组训练样本, D={(xi,yi)|xiRn,yiR}mi=1 , xi 是维数为 n 的输入特征(默认为列向量),yi 是连续的实数值, m 表示样本数,则输入特征可以用矩阵表示为:

X=[x1,x2,,xm]T

输出变量可以用一个向量表示为:

y=[y1,y2,,ym]T

而我们从第一讲已经知道, hθ(xi)=xTiθ , 则我们可以得到如下的表达式:
Xθy=xT1θxTmθy1ym=hθ(x1)y1hθ(xm)ym

则最小均方误差函数可以表示为:
J(θ)=12i=1m(hθ(xi)yi)2=12(Xθy)T(Xθy)

利用第二讲的矩阵基本运算将上式展开,可以得到:
J(θ)=12θTXTXθθTXTyyTXθ+yTy

利用第二讲的矩阵求导,可以得到 J(θ) θ 的偏导数为:
J(θ)θ=12(XTXθ+XTXθ2XTy)=XTXθXTy

令该偏导数为0,则可以得到:
XTXθ=XTy

最终可以得到参数 θ 的解析解为:
θ=(XTX)1XTy

如果矩阵 (XTX)1 可逆,则该解就是全局最优解,有的时候,该矩阵不一定可逆,就是我们常常遇到的样本数远远大于参数的个数即 mn ,那么参数 θ 就只能得到近似解。

从最大似然估计到最小均方误差

有的时候我们会考虑,在做回归问题的时候,为什么用最小均方误差函数作为 \textbf{cost function}, 为什么不用其它的函数。接下来,我们从概率分布的角度去考虑这个问题,随后我们会发现,最小均方误差函数从某种意义上来说,
是从最大似然估计中演化出来的。
我们先假设目标值与输入变量之间存在以下关系:

yi=θTxi+ϵi

其中, ϵi 是一个误差项,表示由于一些我们没有考虑到的因素导致估计值域目标值之间出现得偏差,我们进一步假设这些误差项是
独立同分布的(independently and identically distributed), 并且是均值为0,方差为 σ2 的高斯分布(这是自然界非常常见的一种分布)。我们可以表示为
ϵiN(0,σ2) , 其概率密度函数为:
p(ϵi)=12πσexp(ϵ2i2σ2)

将式代入,可以得到:
p(yi|xi;θ)=12πσexp((yiθTxi)22σ2)

这里需要注意, p(yi|xi;θ) 表示的是 yi xi 的条件概率, θ 是参数, xi 是随机变量,两者之间用 ";" 隔开,不能用
"," 隔开。当我们考虑所有的样本时,则所有的输出变量的分布表示为: p(y|X;θ) , 我们可以建立一个关于参数 θ 的似然函数:
L(θ)=L(θ;X,y)=p(y|X;θ)

因为 ϵi 是独立同分布的,我们可以得到:
L(θ)=i=1mp(yi|xi;θ)=i=1m12πσexp((yiθTxi)22σ2)

最大似然估计原则告诉我们,要选择参数 θ 使得概率要尽可能地高。所以我们可以建立如下的优化函数:
maxθ[i=1m12πσexp((yiθTxi)22σ2)]

上式是一个单调函数,根据单调函数的传递性原则,我们可以对上式取对数,则可以得到:
l(θ)=log(L(θ))=logi=1m12πσexp((yiθTxi)22σ2)=i=1mlog12πσexp((yiθTxi)22σ2)=mlog12πσ1σ212i=1m(yiθTxi)2

因此,要使上式最大化,则只要使其中的二次项最小化,即
minθ12i=1m(hθ(xi)yi)2

我们可以看到,从概率出发,最小均方误差是最大似然估计非常自然的一种延伸,两者最后可以完美的统一起来。

参考文献

Andrew Ng, “Machine Learning”, Stanford University.

这篇关于机器学习 从矩阵和概率的角度解释最小均方误差函数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/457509

相关文章

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

Python的time模块一些常用功能(各种与时间相关的函数)

《Python的time模块一些常用功能(各种与时间相关的函数)》Python的time模块提供了各种与时间相关的函数,包括获取当前时间、处理时间间隔、执行时间测量等,:本文主要介绍Python的... 目录1. 获取当前时间2. 时间格式化3. 延时执行4. 时间戳运算5. 计算代码执行时间6. 转换为指

Python正则表达式语法及re模块中的常用函数详解

《Python正则表达式语法及re模块中的常用函数详解》这篇文章主要给大家介绍了关于Python正则表达式语法及re模块中常用函数的相关资料,正则表达式是一种强大的字符串处理工具,可以用于匹配、切分、... 目录概念、作用和步骤语法re模块中的常用函数总结 概念、作用和步骤概念: 本身也是一个字符串,其中

shell编程之函数与数组的使用详解

《shell编程之函数与数组的使用详解》:本文主要介绍shell编程之函数与数组的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录shell函数函数的用法俩个数求和系统资源监控并报警函数函数变量的作用范围函数的参数递归函数shell数组获取数组的长度读取某下的

MySQL高级查询之JOIN、子查询、窗口函数实际案例

《MySQL高级查询之JOIN、子查询、窗口函数实际案例》:本文主要介绍MySQL高级查询之JOIN、子查询、窗口函数实际案例的相关资料,JOIN用于多表关联查询,子查询用于数据筛选和过滤,窗口函... 目录前言1. JOIN(连接查询)1.1 内连接(INNER JOIN)1.2 左连接(LEFT JOI

MySQL中FIND_IN_SET函数与INSTR函数用法解析

《MySQL中FIND_IN_SET函数与INSTR函数用法解析》:本文主要介绍MySQL中FIND_IN_SET函数与INSTR函数用法解析,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友一... 目录一、功能定义与语法1、FIND_IN_SET函数2、INSTR函数二、本质区别对比三、实际场景案例分

C++ Sort函数使用场景分析

《C++Sort函数使用场景分析》sort函数是algorithm库下的一个函数,sort函数是不稳定的,即大小相同的元素在排序后相对顺序可能发生改变,如果某些场景需要保持相同元素间的相对顺序,可使... 目录C++ Sort函数详解一、sort函数调用的两种方式二、sort函数使用场景三、sort函数排序

C语言函数递归实际应用举例详解

《C语言函数递归实际应用举例详解》程序调用自身的编程技巧称为递归,递归做为一种算法在程序设计语言中广泛应用,:本文主要介绍C语言函数递归实际应用举例的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录前言一、递归的概念与思想二、递归的限制条件 三、递归的实际应用举例(一)求 n 的阶乘(二)顺序打印

C/C++错误信息处理的常见方法及函数

《C/C++错误信息处理的常见方法及函数》C/C++是两种广泛使用的编程语言,特别是在系统编程、嵌入式开发以及高性能计算领域,:本文主要介绍C/C++错误信息处理的常见方法及函数,文中通过代码介绍... 目录前言1. errno 和 perror()示例:2. strerror()示例:3. perror(

Kotlin 作用域函数apply、let、run、with、also使用指南

《Kotlin作用域函数apply、let、run、with、also使用指南》在Kotlin开发中,作用域函数(ScopeFunctions)是一组能让代码更简洁、更函数式的高阶函数,本文将... 目录一、引言:为什么需要作用域函数?二、作用域函China编程数详解1. apply:对象配置的 “流式构建器”最