机器学习 从矩阵和概率的角度解释最小均方误差函数

2023-12-05 12:08

本文主要是介绍机器学习 从矩阵和概率的角度解释最小均方误差函数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最小均方误差函数

之前的讲义里, 我们提到了最小均方误差函数,给出一组有 m 个样本的训练集,我们希望找到合适的参数 θ, 使得预测值 hθ(x) 与目标值尽可能接近。为了估计参数 θ , 我们定义如下的 cost function:

J(θ)=12i=1m(hθ(xi)yi)2

这个 cost function 就是最小均方误差函数,第一讲里面,我们用梯度下降算法估计参数 θ , 而第二讲里面我们提到了矩阵的基本运算及矩阵的求导,现在就从矩阵的角度求参数 θ 的解析解。

矩阵的解析解

给定一组训练样本, D={(xi,yi)|xiRn,yiR}mi=1 , xi 是维数为 n 的输入特征(默认为列向量),yi 是连续的实数值, m 表示样本数,则输入特征可以用矩阵表示为:

X=[x1,x2,,xm]T

输出变量可以用一个向量表示为:

y=[y1,y2,,ym]T

而我们从第一讲已经知道, hθ(xi)=xTiθ , 则我们可以得到如下的表达式:
Xθy=xT1θxTmθy1ym=hθ(x1)y1hθ(xm)ym

则最小均方误差函数可以表示为:
J(θ)=12i=1m(hθ(xi)yi)2=12(Xθy)T(Xθy)

利用第二讲的矩阵基本运算将上式展开,可以得到:
J(θ)=12θTXTXθθTXTyyTXθ+yTy

利用第二讲的矩阵求导,可以得到 J(θ) θ 的偏导数为:
J(θ)θ=12(XTXθ+XTXθ2XTy)=XTXθXTy

令该偏导数为0,则可以得到:
XTXθ=XTy

最终可以得到参数 θ 的解析解为:
θ=(XTX)1XTy

如果矩阵 (XTX)1 可逆,则该解就是全局最优解,有的时候,该矩阵不一定可逆,就是我们常常遇到的样本数远远大于参数的个数即 mn ,那么参数 θ 就只能得到近似解。

从最大似然估计到最小均方误差

有的时候我们会考虑,在做回归问题的时候,为什么用最小均方误差函数作为 \textbf{cost function}, 为什么不用其它的函数。接下来,我们从概率分布的角度去考虑这个问题,随后我们会发现,最小均方误差函数从某种意义上来说,
是从最大似然估计中演化出来的。
我们先假设目标值与输入变量之间存在以下关系:

yi=θTxi+ϵi

其中, ϵi 是一个误差项,表示由于一些我们没有考虑到的因素导致估计值域目标值之间出现得偏差,我们进一步假设这些误差项是
独立同分布的(independently and identically distributed), 并且是均值为0,方差为 σ2 的高斯分布(这是自然界非常常见的一种分布)。我们可以表示为
ϵiN(0,σ2) , 其概率密度函数为:
p(ϵi)=12πσexp(ϵ2i2σ2)

将式代入,可以得到:
p(yi|xi;θ)=12πσexp((yiθTxi)22σ2)

这里需要注意, p(yi|xi;θ) 表示的是 yi xi 的条件概率, θ 是参数, xi 是随机变量,两者之间用 ";" 隔开,不能用
"," 隔开。当我们考虑所有的样本时,则所有的输出变量的分布表示为: p(y|X;θ) , 我们可以建立一个关于参数 θ 的似然函数:
L(θ)=L(θ;X,y)=p(y|X;θ)

因为 ϵi 是独立同分布的,我们可以得到:
L(θ)=i=1mp(yi|xi;θ)=i=1m12πσexp((yiθTxi)22σ2)

最大似然估计原则告诉我们,要选择参数 θ 使得概率要尽可能地高。所以我们可以建立如下的优化函数:
maxθ[i=1m12πσexp((yiθTxi)22σ2)]

上式是一个单调函数,根据单调函数的传递性原则,我们可以对上式取对数,则可以得到:
l(θ)=log(L(θ))=logi=1m12πσexp((yiθTxi)22σ2)=i=1mlog12πσexp((yiθTxi)22σ2)=mlog12πσ1σ212i=1m(yiθTxi)2

因此,要使上式最大化,则只要使其中的二次项最小化,即
minθ12i=1m(hθ(xi)yi)2

我们可以看到,从概率出发,最小均方误差是最大似然估计非常自然的一种延伸,两者最后可以完美的统一起来。

参考文献

Andrew Ng, “Machine Learning”, Stanford University.

这篇关于机器学习 从矩阵和概率的角度解释最小均方误差函数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/457509

相关文章

C++11的函数包装器std::function使用示例

《C++11的函数包装器std::function使用示例》C++11引入的std::function是最常用的函数包装器,它可以存储任何可调用对象并提供统一的调用接口,以下是关于函数包装器的详细讲解... 目录一、std::function 的基本用法1. 基本语法二、如何使用 std::function

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

wolfSSL参数设置或配置项解释

1. wolfCrypt Only 解释:wolfCrypt是一个开源的、轻量级的、可移植的加密库,支持多种加密算法和协议。选择“wolfCrypt Only”意味着系统或应用将仅使用wolfCrypt库进行加密操作,而不依赖其他加密库。 2. DTLS Support 解释:DTLS(Datagram Transport Layer Security)是一种基于UDP的安全协议,提供类似于

hdu1171(母函数或多重背包)

题意:把物品分成两份,使得价值最接近 可以用背包,或者是母函数来解,母函数(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v) 其中指数为价值,每一项的数目为(该物品数+1)个 代码如下: #include<iostream>#include<algorithm>

hdu4865(概率DP)

题意:已知前一天和今天的天气概率,某天的天气概率和叶子的潮湿程度的概率,n天叶子的湿度,求n天最有可能的天气情况。 思路:概率DP,dp[i][j]表示第i天天气为j的概率,状态转移如下:dp[i][j] = max(dp[i][j, dp[i-1][k]*table2[k][j]*table1[j][col] )  代码如下: #include <stdio.h>#include

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n