1.scala中模式匹配 2.spark源码中的模式匹配思考 spark中master会收到worker发过来的akka的消息, 此消息是case class即(Master.class中): case class RegisterWorker(id:String,host:String,port:Int,cores:Int,memory:Int,webUiPort:int
《原始论文:Spectral Networks and Locally Connected Networks on Graphs》 空域卷积非常直观地借鉴了图像里的卷积操作,但缺乏一定的理论基础。 而频域卷积则不同,相比于空域卷积而言,它主要利用的是**图傅里叶变换(Graph Fourier Transform)**实现卷积。 简单来讲,它利用图的**拉普拉斯矩阵(Laplacian ma
从行或列的角度思考矩阵-向量乘法可以帮助理解这个运算的几何意义以及如何在计算中操作。 1. 从行的角度思考 假设我们有一个 m × n m \times n m×n的矩阵 A A A 和一个 n × 1 n \times 1 n×1的列向量 x \mathbf{x} x。矩阵-向量乘法 A x A\mathbf{x} Ax 的结果是一个 m × 1 m \times 1 m×1的列
概述 最近思考激活函数的时候,突然想到神经网络中残差连接是不是和函数的泰勒展开很像,尤其是在激活函数 f ( x ) = x 2 f(x)=x^2 f(x)=x2时(这个激活函数想法来源于 f ( x ) = R e L U 2 ( x ) [ 3 ] f(x)=ReLU^2(x)[3] f(x)=ReLU2(x)[3]),所以验证了一下就顺便写下来了,本文抛砖引玉,如果有建议或更好的想法可以写