opencv实战项目二十:检测箱盖的旋转角度以及位置

2024-09-06 02:20

本文主要是介绍opencv实战项目二十:检测箱盖的旋转角度以及位置,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档

文章目录

  • 前言
  • 一、算法流程:
  • 二、算法实现:
    • 2.1 二值化箱盖并获取最大轮廓:
    • 2.2 凸包与多边形近似提取矩形
    • 2.3 最小外接矩形获取角度与位置
  • 三,整体代码实现:
  • 四,实现效果:


前言

在当今的工业自动化领域,精密制造和智能控制技术的发展正推动着生产流程的持续优化。随着机器视觉技术的不断成熟,其在工业应用中的角色愈发重要,特别是在产品质量监控和自动化装配过程中。本文将深入探讨一种基于计算机视觉的先进技术,旨在实现对箱盖旋转角度与位置的精确检测,从而为高端制造业提供一种高效、可靠的解决方案。本文将详细介绍如何运用计算机视觉技术,结合图像处理、等算法,实现对箱盖旋转角度及位置的自动检测。

一、算法流程:

本次算法流程首先读取并二值化图像,随后寻找并筛选出最大轮廓,通过近似处理确保其为凸四边形,接着计算该轮廓的凸包及最小包围矩形,从而得到其旋转角度和中心点,并在图像上绘制凸包以展示结果,最后输出相关信息并等待用户操作后关闭图像显示窗口。需识别的料盖:在这里插入图片描述

二、算法实现:

2.1 二值化箱盖并获取最大轮廓:

本次获取最大轮廓使用python内置函数max()进行实现,key选cv2.contourArea意为根据面积进行排序。
实现代码:

_, binary_image = cv2.threshold(image, 200, 255, cv2.THRESH_BINARY_INV)
mask = np.zeros_like(binary_image)
# 寻找轮廓
contours, _ = cv2.findContours(binary_image, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
max_contour = max(contours, key=cv2.contourArea)

2.2 凸包与多边形近似提取矩形

凸包(Convex Hull)和多边形近似(Polygon Approximation)是计算机视觉和几何处理中不可或缺的概念,广泛应用于图像处理、机器人导航和计算机辅助设计等领域。凸包定义为一个包含所有给定点并确保任何不在其上的点与凸包上点构成的线段完全位于凸包内部的凸多边形。计算凸包的常见算法包括格雷厄姆扫描、Jarvis March和Quickhull,它们通过逐步添加新点来扩展凸包。凸包在图像处理中用于边缘检测、形状识别和三维重建,在机器人导航中用于路径规划,在计算机辅助设计中用于图形处理。多边形近似则涉及将复杂的曲线或多边形简化为一个更简单的多边形,以减少计算和存储需求,同时保留原始形状的主要特征。多边形近似通常使用曲线或曲面的参数化表示,并通过插值或逼近来近似这些参数化曲线或曲面。
在本次算法中,首先使用凸包对最大轮廓进行简化,然后根据近似多边形进一步筛选矩形轮廓,增强箱盖检测的泛化性。
函数介绍:
凸包:
在OpenCV中,实现凸包的函数是cv2.convexHull。这个函数用于计算给定轮廓的凸包,即包含这些点并且对于任何不在凸包上的点,凸包上的所有点构成的线段都在凸包内部的凸多边形。
hull = cv2.convexHull(points)

points:一个轮廓点列表,这些点可以是二维的([x, y]),也可以是三维的([x, y, z])。
hull:返回的凸包点列表,这些点是凸包的顶点。
cv2.convexHull函数支持不同的轮廓类型,包括封闭的轮廓(cv2.CHAIN_APPROX_CLOSED)和开放的轮廓(cv2.CHAIN_APPROX_OPEN)。

多边形近似:
在OpenCV中,实现多边形近似的函数是cv2.approxPolyDP。这个函数用于对给定的多边形进行近似,即用更少的点来近似原来的多边形,同时尽可能保留其形状。approx = cv2.approxPolyDP(contour, epsilon, closed)

contour:一个轮廓点列表,这些点可以是二维的([x, y]),也可以是三维的([x, y, z])。
epsilon:近似精度,即保留原始轮廓细节的比例。
closed:一个布尔值,如果为True,则近似封闭的轮廓;如果为False,则近似开放的轮廓。
approx:返回的近似多边形的点列表,这些点是近似后的多边形的顶点。

实现代码:

perimeter = cv2.arcLength(max_contour, True)
hull = cv2.convexHull(max_contour)cv2.drawContours(image, hull, -1, (0, 255, 0), 3)#
approx = cv2.approxPolyDP(hull, 0.14 * perimeter, True)

2.3 最小外接矩形获取角度与位置

在OpenCV中,实现最小外接矩形的函数是cv2.minAreaRect。这个函数用于计算包含给定轮廓的最小面积矩形,即该轮廓外接的最小矩形。rect = cv2.minAreaRect(points)。

points:一个轮廓点列表,这些点可以是二维的([x, y]),也可以是三维的([x, y, z])。
rect:返回的最小面积矩形的矩形对象,包含以下四个元素:
rect[0]:矩形的中心点坐标。
rect[1]:矩形的尺寸,即宽度和高度。
rect[2]:矩形的旋转角度,相对于水平轴的角度。
cv2.minAreaRect函数返回的矩形对象是一个包含四个元素的元组,这些元素代表了矩形的中心点坐标、尺寸和旋转角度。

使用:

 rect = cv2.minAreaRect(approx)# 获取旋转角angle = rect[2]center  = tuple(map(int, rect[0]))# 将小数转化为整数便于后面绘制

三,整体代码实现:

import cv2
import numpy as np# 读取图像
image = cv2.imread(r'F:\cv_traditional\024a01!450450.jpg', cv2.IMREAD_GRAYSCALE)# 确保图像是二值的
_, binary_image = cv2.threshold(image, 200, 255, cv2.THRESH_BINARY_INV)
mask = np.zeros_like(binary_image)# 寻找轮廓
contours, _ = cv2.findContours(binary_image, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
max_contour = max(contours, key=cv2.contourArea)# 计算最大轮廓的周长
perimeter = cv2.arcLength(max_contour, True)# 计算最大轮廓的凸包
hull = cv2.convexHull(max_contour)# 在图像上绘制凸包
cv2.drawContours(image, [hull], -1, (0, 255, 0), 3)# 近似最大轮廓的凸包,保留一定比例的周长
approx = cv2.approxPolyDP(hull, 0.14 * perimeter, True)# 检查近似后的轮廓是否为凸四边形
if len(approx) == 4 and cv2.isContourConvex(approx):# 计算最小面积矩形,获取旋转角度和中心点rect = cv2.minAreaRect(approx)# 获取旋转角angle = rect[2]center = tuple(map(int, rect[0]))# 在图像上绘制中心点cv2.circle(image, center, 10, (0, 0, 0), -1)# 在图像上显示旋转角度cv2.putText(image, str(angle), (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 0), 1)# 显示结果
cv2.imshow('Convex Hulls of Squares', image)# 等待按键后关闭窗口
cv2.waitKey(0)
cv2.destroyAllWindows()

四,实现效果:

在这里插入图片描述

这篇关于opencv实战项目二十:检测箱盖的旋转角度以及位置的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1140725

相关文章

网页解析 lxml 库--实战

lxml库使用流程 lxml 是 Python 的第三方解析库,完全使用 Python 语言编写,它对 XPath表达式提供了良好的支 持,因此能够了高效地解析 HTML/XML 文档。本节讲解如何通过 lxml 库解析 HTML 文档。 pip install lxml lxm| 库提供了一个 etree 模块,该模块专门用来解析 HTML/XML 文档,下面来介绍一下 lxml 库

这15个Vue指令,让你的项目开发爽到爆

1. V-Hotkey 仓库地址: github.com/Dafrok/v-ho… Demo: 戳这里 https://dafrok.github.io/v-hotkey 安装: npm install --save v-hotkey 这个指令可以给组件绑定一个或多个快捷键。你想要通过按下 Escape 键后隐藏某个组件,按住 Control 和回车键再显示它吗?小菜一碟: <template

如何用Docker运行Django项目

本章教程,介绍如何用Docker创建一个Django,并运行能够访问。 一、拉取镜像 这里我们使用python3.11版本的docker镜像 docker pull python:3.11 二、运行容器 这里我们将容器内部的8080端口,映射到宿主机的80端口上。 docker run -itd --name python311 -p

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

C#实战|大乐透选号器[6]:实现实时显示已选择的红蓝球数量

哈喽,你好啊,我是雷工。 关于大乐透选号器在前面已经记录了5篇笔记,这是第6篇; 接下来实现实时显示当前选中红球数量,蓝球数量; 以下为练习笔记。 01 效果演示 当选择和取消选择红球或蓝球时,在对应的位置显示实时已选择的红球、蓝球的数量; 02 标签名称 分别设置Label标签名称为:lblRedCount、lblBlueCount

在cscode中通过maven创建java项目

在cscode中创建java项目 可以通过博客完成maven的导入 建立maven项目 使用快捷键 Ctrl + Shift + P 建立一个 Maven 项目 1 Ctrl + Shift + P 打开输入框2 输入 "> java create"3 选择 maven4 选择 No Archetype5 输入 域名6 输入项目名称7 建立一个文件目录存放项目,文件名一般为项目名8 确定

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X

滚雪球学Java(87):Java事务处理:JDBC的ACID属性与实战技巧!真有两下子!

咦咦咦,各位小可爱,我是你们的好伙伴——bug菌,今天又来给大家普及Java SE啦,别躲起来啊,听我讲干货还不快点赞,赞多了我就有动力讲得更嗨啦!所以呀,养成先点赞后阅读的好习惯,别被干货淹没了哦~ 🏆本文收录于「滚雪球学Java」专栏,专业攻坚指数级提升,助你一臂之力,带你早日登顶🚀,欢迎大家关注&&收藏!持续更新中,up!up!up!! 环境说明:Windows 10