opencv实战项目二十:检测箱盖的旋转角度以及位置

2024-09-06 02:20

本文主要是介绍opencv实战项目二十:检测箱盖的旋转角度以及位置,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档

文章目录

  • 前言
  • 一、算法流程:
  • 二、算法实现:
    • 2.1 二值化箱盖并获取最大轮廓:
    • 2.2 凸包与多边形近似提取矩形
    • 2.3 最小外接矩形获取角度与位置
  • 三,整体代码实现:
  • 四,实现效果:


前言

在当今的工业自动化领域,精密制造和智能控制技术的发展正推动着生产流程的持续优化。随着机器视觉技术的不断成熟,其在工业应用中的角色愈发重要,特别是在产品质量监控和自动化装配过程中。本文将深入探讨一种基于计算机视觉的先进技术,旨在实现对箱盖旋转角度与位置的精确检测,从而为高端制造业提供一种高效、可靠的解决方案。本文将详细介绍如何运用计算机视觉技术,结合图像处理、等算法,实现对箱盖旋转角度及位置的自动检测。

一、算法流程:

本次算法流程首先读取并二值化图像,随后寻找并筛选出最大轮廓,通过近似处理确保其为凸四边形,接着计算该轮廓的凸包及最小包围矩形,从而得到其旋转角度和中心点,并在图像上绘制凸包以展示结果,最后输出相关信息并等待用户操作后关闭图像显示窗口。需识别的料盖:在这里插入图片描述

二、算法实现:

2.1 二值化箱盖并获取最大轮廓:

本次获取最大轮廓使用python内置函数max()进行实现,key选cv2.contourArea意为根据面积进行排序。
实现代码:

_, binary_image = cv2.threshold(image, 200, 255, cv2.THRESH_BINARY_INV)
mask = np.zeros_like(binary_image)
# 寻找轮廓
contours, _ = cv2.findContours(binary_image, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
max_contour = max(contours, key=cv2.contourArea)

2.2 凸包与多边形近似提取矩形

凸包(Convex Hull)和多边形近似(Polygon Approximation)是计算机视觉和几何处理中不可或缺的概念,广泛应用于图像处理、机器人导航和计算机辅助设计等领域。凸包定义为一个包含所有给定点并确保任何不在其上的点与凸包上点构成的线段完全位于凸包内部的凸多边形。计算凸包的常见算法包括格雷厄姆扫描、Jarvis March和Quickhull,它们通过逐步添加新点来扩展凸包。凸包在图像处理中用于边缘检测、形状识别和三维重建,在机器人导航中用于路径规划,在计算机辅助设计中用于图形处理。多边形近似则涉及将复杂的曲线或多边形简化为一个更简单的多边形,以减少计算和存储需求,同时保留原始形状的主要特征。多边形近似通常使用曲线或曲面的参数化表示,并通过插值或逼近来近似这些参数化曲线或曲面。
在本次算法中,首先使用凸包对最大轮廓进行简化,然后根据近似多边形进一步筛选矩形轮廓,增强箱盖检测的泛化性。
函数介绍:
凸包:
在OpenCV中,实现凸包的函数是cv2.convexHull。这个函数用于计算给定轮廓的凸包,即包含这些点并且对于任何不在凸包上的点,凸包上的所有点构成的线段都在凸包内部的凸多边形。
hull = cv2.convexHull(points)

points:一个轮廓点列表,这些点可以是二维的([x, y]),也可以是三维的([x, y, z])。
hull:返回的凸包点列表,这些点是凸包的顶点。
cv2.convexHull函数支持不同的轮廓类型,包括封闭的轮廓(cv2.CHAIN_APPROX_CLOSED)和开放的轮廓(cv2.CHAIN_APPROX_OPEN)。

多边形近似:
在OpenCV中,实现多边形近似的函数是cv2.approxPolyDP。这个函数用于对给定的多边形进行近似,即用更少的点来近似原来的多边形,同时尽可能保留其形状。approx = cv2.approxPolyDP(contour, epsilon, closed)

contour:一个轮廓点列表,这些点可以是二维的([x, y]),也可以是三维的([x, y, z])。
epsilon:近似精度,即保留原始轮廓细节的比例。
closed:一个布尔值,如果为True,则近似封闭的轮廓;如果为False,则近似开放的轮廓。
approx:返回的近似多边形的点列表,这些点是近似后的多边形的顶点。

实现代码:

perimeter = cv2.arcLength(max_contour, True)
hull = cv2.convexHull(max_contour)cv2.drawContours(image, hull, -1, (0, 255, 0), 3)#
approx = cv2.approxPolyDP(hull, 0.14 * perimeter, True)

2.3 最小外接矩形获取角度与位置

在OpenCV中,实现最小外接矩形的函数是cv2.minAreaRect。这个函数用于计算包含给定轮廓的最小面积矩形,即该轮廓外接的最小矩形。rect = cv2.minAreaRect(points)。

points:一个轮廓点列表,这些点可以是二维的([x, y]),也可以是三维的([x, y, z])。
rect:返回的最小面积矩形的矩形对象,包含以下四个元素:
rect[0]:矩形的中心点坐标。
rect[1]:矩形的尺寸,即宽度和高度。
rect[2]:矩形的旋转角度,相对于水平轴的角度。
cv2.minAreaRect函数返回的矩形对象是一个包含四个元素的元组,这些元素代表了矩形的中心点坐标、尺寸和旋转角度。

使用:

 rect = cv2.minAreaRect(approx)# 获取旋转角angle = rect[2]center  = tuple(map(int, rect[0]))# 将小数转化为整数便于后面绘制

三,整体代码实现:

import cv2
import numpy as np# 读取图像
image = cv2.imread(r'F:\cv_traditional\024a01!450450.jpg', cv2.IMREAD_GRAYSCALE)# 确保图像是二值的
_, binary_image = cv2.threshold(image, 200, 255, cv2.THRESH_BINARY_INV)
mask = np.zeros_like(binary_image)# 寻找轮廓
contours, _ = cv2.findContours(binary_image, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
max_contour = max(contours, key=cv2.contourArea)# 计算最大轮廓的周长
perimeter = cv2.arcLength(max_contour, True)# 计算最大轮廓的凸包
hull = cv2.convexHull(max_contour)# 在图像上绘制凸包
cv2.drawContours(image, [hull], -1, (0, 255, 0), 3)# 近似最大轮廓的凸包,保留一定比例的周长
approx = cv2.approxPolyDP(hull, 0.14 * perimeter, True)# 检查近似后的轮廓是否为凸四边形
if len(approx) == 4 and cv2.isContourConvex(approx):# 计算最小面积矩形,获取旋转角度和中心点rect = cv2.minAreaRect(approx)# 获取旋转角angle = rect[2]center = tuple(map(int, rect[0]))# 在图像上绘制中心点cv2.circle(image, center, 10, (0, 0, 0), -1)# 在图像上显示旋转角度cv2.putText(image, str(angle), (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 0), 1)# 显示结果
cv2.imshow('Convex Hulls of Squares', image)# 等待按键后关闭窗口
cv2.waitKey(0)
cv2.destroyAllWindows()

四,实现效果:

在这里插入图片描述

这篇关于opencv实战项目二十:检测箱盖的旋转角度以及位置的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1140725

相关文章

部署Vue项目到服务器后404错误的原因及解决方案

《部署Vue项目到服务器后404错误的原因及解决方案》文章介绍了Vue项目部署步骤以及404错误的解决方案,部署步骤包括构建项目、上传文件、配置Web服务器、重启Nginx和访问域名,404错误通常是... 目录一、vue项目部署步骤二、404错误原因及解决方案错误场景原因分析解决方案一、Vue项目部署步骤

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

golang内存对齐的项目实践

《golang内存对齐的项目实践》本文主要介绍了golang内存对齐的项目实践,内存对齐不仅有助于提高内存访问效率,还确保了与硬件接口的兼容性,是Go语言编程中不可忽视的重要优化手段,下面就来介绍一下... 目录一、结构体中的字段顺序与内存对齐二、内存对齐的原理与规则三、调整结构体字段顺序优化内存对齐四、内

配置springboot项目动静分离打包分离lib方式

《配置springboot项目动静分离打包分离lib方式》本文介绍了如何将SpringBoot工程中的静态资源和配置文件分离出来,以减少jar包大小,方便修改配置文件,通过在jar包同级目录创建co... 目录前言1、分离配置文件原理2、pom文件配置3、使用package命令打包4、总结前言默认情况下,

在Java中使用ModelMapper简化Shapefile属性转JavaBean实战过程

《在Java中使用ModelMapper简化Shapefile属性转JavaBean实战过程》本文介绍了在Java中使用ModelMapper库简化Shapefile属性转JavaBean的过程,对比... 目录前言一、原始的处理办法1、使用Set方法来转换2、使用构造方法转换二、基于ModelMapper

Java实战之自助进行多张图片合成拼接

《Java实战之自助进行多张图片合成拼接》在当今数字化时代,图像处理技术在各个领域都发挥着至关重要的作用,本文为大家详细介绍了如何使用Java实现多张图片合成拼接,需要的可以了解下... 目录前言一、图片合成需求描述二、图片合成设计与实现1、编程语言2、基础数据准备3、图片合成流程4、图片合成实现三、总结前

python实现简易SSL的项目实践

《python实现简易SSL的项目实践》本文主要介绍了python实现简易SSL的项目实践,包括CA.py、server.py和client.py三个模块,文中通过示例代码介绍的非常详细,对大家的学习... 目录运行环境运行前准备程序实现与流程说明运行截图代码CA.pyclient.pyserver.py参

css实现图片旋转功能

《css实现图片旋转功能》:本文主要介绍了四种CSS变换效果:图片旋转90度、水平翻转、垂直翻转,并附带了相应的代码示例,详细内容请阅读本文,希望能对你有所帮助... 一 css实现图片旋转90度.icon{ -moz-transform:rotate(-90deg); -webkit-transfo

nginx-rtmp-module构建流媒体直播服务器实战指南

《nginx-rtmp-module构建流媒体直播服务器实战指南》本文主要介绍了nginx-rtmp-module构建流媒体直播服务器实战指南,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. RTMP协议介绍与应用RTMP协议的原理RTMP协议的应用RTMP与现代流媒体技术的关系2