检测专题

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X

基于 YOLOv5 的积水检测系统:打造高效智能的智慧城市应用

在城市发展中,积水问题日益严重,特别是在大雨过后,积水往往会影响交通甚至威胁人们的安全。通过现代计算机视觉技术,我们能够智能化地检测和识别积水区域,减少潜在危险。本文将介绍如何使用 YOLOv5 和 PyQt5 搭建一个积水检测系统,结合深度学习和直观的图形界面,为用户提供高效的解决方案。 源码地址: PyQt5+YoloV5 实现积水检测系统 预览: 项目背景

JavaFX应用更新检测功能(在线自动更新方案)

JavaFX开发的桌面应用属于C端,一般来说需要版本检测和自动更新功能,这里记录一下一种版本检测和自动更新的方法。 1. 整体方案 JavaFX.应用版本检测、自动更新主要涉及一下步骤: 读取本地应用版本拉取远程版本并比较两个版本如果需要升级,那么拉取更新历史弹出升级控制窗口用户选择升级时,拉取升级包解压,重启应用用户选择忽略时,本地版本标志为忽略版本用户选择取消时,隐藏升级控制窗口 2.

[数据集][目标检测]血细胞检测数据集VOC+YOLO格式2757张4类别

数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):2757 标注数量(xml文件个数):2757 标注数量(txt文件个数):2757 标注类别数:4 标注类别名称:["Platelets","RBC","WBC","sickle cell"] 每个类别标注的框数:

Temu官方宣导务必将所有的点位材料进行检测-RSL资质检测

关于饰品类产品合规问题宣导: 产品法规RSL要求 RSL测试是根据REACH法规及附录17的要求进行测试。REACH法规是欧洲一项重要的法规,其中包含许多对化学物质进行限制的规定和高度关注物质。 为了确保珠宝首饰的安全性,欧盟REACH法规规定,珠宝首饰上架各大电商平台前必须进行RSLReport(欧盟禁限用化学物质检测报告)资质认证,以确保产品不含对人体有害的化学物质。 RSL-铅,

YOLOv8/v10+DeepSORT多目标车辆跟踪(车辆检测/跟踪/车辆计数/测速/禁停区域/绘制进出线/绘制禁停区域/车道车辆统计)

01:YOLOv8 + DeepSort 车辆跟踪 该项目利用YOLOv8作为目标检测模型,DeepSort用于多目标跟踪。YOLOv8负责从视频帧中检测出车辆的位置,而DeepSort则负责关联这些检测结果,从而实现车辆的持续跟踪。这种组合使得系统能够在视频流中准确地识别并跟随特定车辆。 02:YOLOv8 + DeepSort 车辆跟踪 + 任意绘制进出线 在此基础上增加了用户

独立按键单击检测(延时消抖+定时器扫描)

目录 独立按键简介 按键抖动 模块接线 延时消抖 Key.h Key.c 定时器扫描按键代码 Key.h Key.c main.c 思考  MultiButton按键驱动 独立按键简介 ​ 轻触按键相当于一种电子开关,按下时开关接通,松开时开关断开,实现原理是通过轻触按键内部的金属弹片受力弹动来实现接通与断开。  ​ 按键抖动 由于按键内部使用的是机

基于stm32的河流检测系统-单片机毕业设计

文章目录 前言资料获取设计介绍功能介绍具体实现截图参考文献设计获取 前言 💗博主介绍:✌全网粉丝10W+,CSDN特邀作者、博客专家、CSDN新星计划导师,一名热衷于单片机技术探索与分享的博主、专注于 精通51/STM32/MSP430/AVR等单片机设计 主要对象是咱们电子相关专业的大学生,希望您们都共创辉煌!✌💗 👇🏻 精彩专栏 推荐订阅👇🏻 单片机设计精品

Android模拟器的检测

Android模拟器的检测 需求:最近有一个需求,要检测出模拟器,防止恶意刷流量刷注册。 1.基于特征属性来检测模拟器,比如IMSI,IDS,特殊文件等等。 这个方案局限性太大,貌似现在大部分模拟器默认就是修改了的,还不需要人为的去修改。 经过测试,发现如下图所示。 如果是模拟器的话,这些特殊值应该返回true,比如DeviceIDS,Build。可是居然返回了false,说明特殊值

[数据集][目标检测]智慧农业草莓叶子病虫害检测数据集VOC+YOLO格式4040张9类别

数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):4040 标注数量(xml文件个数):4040 标注数量(txt文件个数):4040 标注类别数:9 标注类别名称:["acalcerosis","fertilizer","flower","fruit","grey

frida检测绕过-libmsaoaidsec.so

libmsaoaidsec.so 部分检测手段 检测机制在native层实现一般在init_proc()函数中触发使用 pthread_create 创建2个检测线程 绕过: nop pthread_create 的调用 eg: 在 bilibil1 - v7.26.1版本中, 在got表导入了pthread_create 绕过: 替换dlsym(xx, "pthread_create ")的返

如何将卷积神经网络(CNN)应用于医学图像分析:从分类到分割和检测的实用指南

引言 在现代医疗领域,医学图像已经成为疾病诊断和治疗规划的重要工具。医学图像的类型繁多,包括但不限于X射线、CT(计算机断层扫描)、MRI(磁共振成像)和超声图像。这些图像提供了对身体内部结构的详细视图,有助于医生在进行准确诊断和制定个性化治疗方案时获取关键的信息。 1. 医学图像分析的挑战 医学图像分析面临诸多挑战,其中包括: 图像数据的复杂性:医学图像通常具有高维度和复杂的结构

【YOLO 系列】基于YOLOV8的智能花卉分类检测系统【python源码+Pyqt5界面+数据集+训练代码】

前言: 花朵作为自然界中的重要组成部分,不仅在生态学上具有重要意义,也在园艺、农业以及艺术领域中占有一席之地。随着图像识别技术的发展,自动化的花朵分类对于植物研究、生物多样性保护以及园艺爱好者来说变得越发重要。为了提高花朵分类的效率和准确性,我们启动了基于YOLO V8的花朵分类智能识别系统项目。该项目利用深度学习技术,通过分析花朵图像,自动识别并分类不同种类的花朵,为用户提供一个高效的花朵识别

WebShell流量特征检测_哥斯拉篇

90后用菜刀,95后用蚁剑,00后用冰蝎和哥斯拉,以phpshell连接为例,本文主要是对后三款经典的webshell管理工具进行流量分析和检测。 什么是一句话木马? 1、定义 顾名思义就是执行恶意指令的木马,通过技术手段上传到指定服务器并可以正常访问,将我们需要服务器执行的命令上传并执行 2、特点 短小精悍,功能强大,隐蔽性非常好 3、举例 php一句话木马用php语言编写的,运行

【微信小程序】检测版本是否更新

关于销毁 当用户点击了右上角的胶囊按钮关闭小程序,或者滑动屏幕返回手机主页面(离开微信),这时候小程序并没有直接销毁,而是进入了后台。当再次进入微信或者再次打开小程序,又会从后台进入前台。 只有当小程序进入后台一定时间(也就是时间过长),或者系统资源占用过高,才会被真正的销毁。 冷启动 & 热启动 冷启动:小程序首次打开或者销毁后再次被打开。 热启动:是指从后台切换到前台,或者小程序在后台运

目标检测-RT-DETR

RT-DETR (Real-Time Detection Transformer) 是一种结合了 Transformer 和实时目标检测的创新模型架构。它旨在解决现有目标检测模型在速度和精度之间的权衡问题,通过引入高效的 Transformer 模块和优化的检测头,提升了模型的实时性和准确性。RT-DETR 可以直接用于端到端目标检测,省去了锚框设计,并且在推理阶段具有较高的速度。 RT-DET

从零开始学cv-14:图像边缘检测

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、图像边缘是什么?二、Sobel 算子三、Scharr 算子四、Prewitt算子五、Canny算子 前言 边缘检测是OpenCV中的一个重要组成部分,它用于识别图像中亮度变化显著的点,即边缘。通过边缘检测,我们可以从图像中提取出重要的特征,为后续的图像分析、形状识别和物体跟踪等任务奠定

视频安防监控LntonAIServer安防管理平台抖动检测和过亮过暗检测

随着视频监控技术的发展,视频质量成为确保监控系统有效性的重要因素。LntonAIServer通过引入抖动检测与过亮过暗检测功能,进一步提升了视频监控系统的可靠性和用户体验。这些功能可以帮助及时发现并解决视频流中的质量问题,确保视频监控系统始终处于最佳工作状态。 一、抖动检测 抖动检测功能主要用于识别视频画面中是否存在不稳定或频繁晃动的情况。这种情况可能是由于摄像机安装不稳、外部振动或视频信

水面垃圾检测数据集 3000张 水面垃圾 带标注 voc yolo

数据集概述 该数据集包含3000张图像,专注于水面垃圾的检测。数据集已经按照VOC(Visual Object Classes)和YOLO(You Only Look Once)两种格式进行了标注,适用于训练深度学习模型,特别是物体检测模型,用于识别水面上的各种垃圾。 数据集特点 多样性:包含3000张图像,涵盖了多种类型的水面垃圾,确保模型能够识别各种类型的垃圾。双标注格式:提供VO

目标检测-YOLOv3

YOLOv3介绍 YOLOv3 (You Only Look Once, Version 3) 是 YOLO 系列目标检测模型的第三个版本,相较于 YOLOv2 有了显著的改进和增强,尤其在检测速度和精度上表现优异。YOLOv3 的设计目标是在保持高速的前提下提升检测的准确性和稳定性。下面是对 YOLOv3 改进和优势的介绍,以及 YOLOv3 核心部分的代码展示。 相比 YOLOv2 的改进

SimD:基于相似度距离的小目标检测标签分配

摘要 https://arxiv.org/pdf/2407.02394 由于物体尺寸有限且信息不足,小物体检测正成为计算机视觉领域最具挑战性的任务之一。标签分配策略是影响物体检测精度的关键因素。尽管已经存在一些针对小物体的有效标签分配策略,但大多数策略都集中在降低对边界框的敏感性以增加正样本数量上,并且需要设置一些固定的超参数。然而,更多的正样本并不一定会带来更好的检测结果,事实上,过多的正样本

基于YOLOv10的垃圾检测系统

基于YOLOv10的垃圾检测系统  (价格90) 包含    ['CardBoard', 'Glass', 'Metal', 'Paper', 'Plastic']     5个类             ['纸板', '玻璃', '金属', '纸张', '塑料'] 通过PYQT构建UI界面,包含图片检测,视频检测,摄像头实时检测。 (该系统可以根据数据训练出的yolov10的权

目标检测常见数据集格式

目标检测常见的数据集格式COCO、YOLO、VOC、DATA。 1、COCO 数据标注格式JSON,JSON文件中包含多个关键字段,如info、images、annotations等,分别存储了数据集的基本信息、图像信息和标注信息 COCO数据集的下载 官网地址:http://cocodataset.org/#download 2014年数据集的下载 train2014:http://imag

OpenCV结构分析与形状描述符(10)检测并提取轮廓函数findContours()的使用

操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C++11 算法描述 在二值图像中查找轮廓。 该函数使用算法 253从二值图像中检索轮廓。轮廓是有用的工具,可用于形状分析和对象检测与识别。参见 OpenCV 示例目录中的 squares.cpp。 findContours 是 OpenCV 库中的一个重要函数

[数据集][目标检测]抽烟检测数据集VOC+YOLO格式22559张2类别

数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):22559 标注数量(xml文件个数):22559 标注数量(txt文件个数):22559 标注类别数:2 标注类别名称:["cig-pack","smoke"] 每个类别标注的框数: cig-pack 框数 = 2