YOLOv8/v10+DeepSORT多目标车辆跟踪(车辆检测/跟踪/车辆计数/测速/禁停区域/绘制进出线/绘制禁停区域/车道车辆统计)

本文主要是介绍YOLOv8/v10+DeepSORT多目标车辆跟踪(车辆检测/跟踪/车辆计数/测速/禁停区域/绘制进出线/绘制禁停区域/车道车辆统计),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 

01:YOLOv8 + DeepSort 车辆跟踪

该项目利用YOLOv8作为目标检测模型,DeepSort用于多目标跟踪。YOLOv8负责从视频帧中检测出车辆的位置,而DeepSort则负责关联这些检测结果,从而实现车辆的持续跟踪。这种组合使得系统能够在视频流中准确地识别并跟随特定车辆。

02:YOLOv8 + DeepSort 车辆跟踪 + 任意绘制进出线

在此基础上增加了用户界面功能,允许用户在视频监控区域内自由绘制进出线。当被跟踪的车辆穿过这些线时,系统会记录事件,例如记录车辆进入或离开某个区域的时间。这对于交通流量管理和安全监控很有帮助。

03:YOLOv8 + DeepSort 车辆跟踪 + 测速

系统增加了测速功能,通过计算车辆在两帧或多帧图像之间的位移来估计其速度。一旦检测到车辆超速,系统将触发报警机制。这项功能对于交通安全监控尤为重要。

04:YOLOv8 + DeepSort 车辆跟踪 + 测速 + 任意绘制进出线

结合了测速和任意绘制进出线的功能,不仅能够跟踪车辆并测量其速度,还能在用户定义的进出线上记录车辆的速度和通行时间。这对于交通管理和执法活动非常有用。

05:YOLOv8 + DeepSort 车辆跟踪 + 禁停区域 + 进出线

增加了禁停区域的检测功能,系统能够识别并标记出不允许停车的区域。当车辆在这些区域内停留时,系统将触发警报。同时,进出线的功能可以帮助监控车辆是否非法进入禁停区。

06:YOLOv8 + DeepSort 车辆跟踪 + 任意绘制禁停区域 + 任意绘制进出线

进一步提升了系统的灵活性,允许用户根据需要自定义禁停区域以及进出线的位置。这种配置可以更好地适应各种应用场景,如临时禁停区域的设置。

07:YOLOv8 + DeepSort 车辆跟踪 + 测速 + 禁停区域 + 进出线

整合了测速、禁停区域和进出线的功能,系统可以在监测车辆速度的同时,防止车辆在不应停车的地方停留,并记录它们的进出情况。这对于交通安全管理非常关键。

08:YOLOv8 + DeepSort 车辆跟踪 + 测速 + 任意绘制禁停区域 + 任意绘制进出线

提供了最大的灵活性,允许用户根据具体的监控需求自由设定禁停区域和进出线的位置。这对于需要高度定制化监控解决方案的应用尤其适用。

09:YOLOv8 + DeepSort 车辆跟踪 + 车道车辆检测

此项目在车辆跟踪的基础上增加了车道检测功能,能够识别道路上的不同车道,并且能够区分各车道上的车辆。这有助于智能交通系统更好地管理交通流量,减少道路拥堵现象。

每个项目都利用了YOLOv8的高效检测能力和DeepSort的跟踪优势,可以根据具体的应用场景和技术要求进行调整和优化。

首先,确保安装了必要的库:

 
1pip install ultralytics  # YOLOv8
2pip install deep_sort_pytorch  # DeepSort

基础代码框架

1. 导入必要的库
 
1import cv2
2from ultralytics import YOLO
3from deep_sort_pytorch.deep_sort import DeepSort
4import numpy as np
2. 初始化YOLOv8模型和DeepSort
1# 加载YOLOv8模型
2model = YOLO('yolov8n.pt')  # 或者使用预训练模型路径
3
4# 初始化DeepSort
5deepsort = DeepSort(
6    'osnet_x0_25',
7    max_dist=0.2,
8    max_iou_distance=0.7,
9    max_age=70,
10    n_init=3,
11    nn_budget=100,
12    use_cuda=True
13)
3. 定义处理每一帧的方法
1def process_frame(frame, model, deepsort):
2    # 使用YOLOv8进行目标检测
3    results = model(frame)
4
5    # 获取检测结果
6    boxes = results[0].boxes.cpu().numpy()
7    scores = results[0].scores.cpu().numpy()
8    classes = results[0].names
9
10    # 只保留车辆类别的检测结果
11    vehicle_boxes = []
12    for box, score, class_name in zip(boxes, scores, classes):
13        if class_name in ['car', 'truck', 'bus']:  # 根据YOLOv8的类别名称选择
14            vehicle_boxes.append([*box[:4], score])
15
16    # 将检测结果传递给DeepSort进行跟踪
17    outputs = deepsort.update(np.array(vehicle_boxes), frame)
18
19    # 绘制跟踪框
20    for output in outputs:
21        x1, y1, x2, y2, track_id = output
22        cv2.rectangle(frame, (int(x1), int(y1)), (int(x2), int(y2)), (0, 255, 0), 2)
23        cv2.putText(frame, f"ID: {int(track_id)}", (int(x1), int(y1 - 10)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
24
25    return frame
4. 处理视频流
1# 打开视频文件
2video_path = 'path_to_your_video.mp4'
3cap = cv2.VideoCapture(video_path)
4
5while cap.isOpened():
6    ret, frame = cap.read()
7    if not ret:
8        break
9
10    # 处理每一帧
11    processed_frame = process_frame(frame, model, deepsort)
12
13    # 显示结果
14    cv2.imshow('Vehicle Tracking', processed_frame)
15
16    # 按Q键退出
17    if cv2.waitKey(1) & 0xFF == ord('q'):
18        break
19
20# 清理
21cap.release()
22cv2.destroyAllWindows()

扩展功能

对于扩展功能,如测速、绘制进出线、禁停区域等功能,需要在process_frame函数中加入额外的逻辑。例如,为了实现测速功能,你可以根据车辆在不同帧中的位置变化来计算速度;为了绘制进出线,可以在processed_frame上使用cv2.line()函数添加线条,并检查车辆是否跨越了这些线。

这篇关于YOLOv8/v10+DeepSORT多目标车辆跟踪(车辆检测/跟踪/车辆计数/测速/禁停区域/绘制进出线/绘制禁停区域/车道车辆统计)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1147750

相关文章

SpringBoot使用Apache Tika检测敏感信息

《SpringBoot使用ApacheTika检测敏感信息》ApacheTika是一个功能强大的内容分析工具,它能够从多种文件格式中提取文本、元数据以及其他结构化信息,下面我们来看看如何使用Ap... 目录Tika 主要特性1. 多格式支持2. 自动文件类型检测3. 文本和元数据提取4. 支持 OCR(光学

使用Python绘制蛇年春节祝福艺术图

《使用Python绘制蛇年春节祝福艺术图》:本文主要介绍如何使用Python的Matplotlib库绘制一幅富有创意的“蛇年有福”艺术图,这幅图结合了数字,蛇形,花朵等装饰,需要的可以参考下... 目录1. 绘图的基本概念2. 准备工作3. 实现代码解析3.1 设置绘图画布3.2 绘制数字“2025”3.3

使用Python绘制可爱的招财猫

《使用Python绘制可爱的招财猫》招财猫,也被称为“幸运猫”,是一种象征财富和好运的吉祥物,经常出现在亚洲文化的商店、餐厅和家庭中,今天,我将带你用Python和matplotlib库从零开始绘制一... 目录1. 为什么选择用 python 绘制?2. 绘图的基本概念3. 实现代码解析3.1 设置绘图画

Python绘制土地利用和土地覆盖类型图示例详解

《Python绘制土地利用和土地覆盖类型图示例详解》本文介绍了如何使用Python绘制土地利用和土地覆盖类型图,并提供了详细的代码示例,通过安装所需的库,准备地理数据,使用geopandas和matp... 目录一、所需库的安装二、数据准备三、绘制土地利用和土地覆盖类型图四、代码解释五、其他可视化形式1.

opencv实现像素统计的示例代码

《opencv实现像素统计的示例代码》本文介绍了OpenCV中统计图像像素信息的常用方法和函数,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 统计像素值的基本信息2. 统计像素值的直方图3. 统计像素值的总和4. 统计非零像素的数量

如何用Java结合经纬度位置计算目标点的日出日落时间详解

《如何用Java结合经纬度位置计算目标点的日出日落时间详解》这篇文章主详细讲解了如何基于目标点的经纬度计算日出日落时间,提供了在线API和Java库两种计算方法,并通过实际案例展示了其应用,需要的朋友... 目录前言一、应用示例1、天安门升旗时间2、湖南省日出日落信息二、Java日出日落计算1、在线API2

如何用Python绘制简易动态圣诞树

《如何用Python绘制简易动态圣诞树》这篇文章主要给大家介绍了关于如何用Python绘制简易动态圣诞树,文中讲解了如何通过编写代码来实现特定的效果,包括代码的编写技巧和效果的展示,需要的朋友可以参考... 目录代码:效果:总结 代码:import randomimport timefrom math

如何使用 Bash 脚本中的time命令来统计命令执行时间(中英双语)

《如何使用Bash脚本中的time命令来统计命令执行时间(中英双语)》本文介绍了如何在Bash脚本中使用`time`命令来测量命令执行时间,包括`real`、`user`和`sys`三个时间指标,... 使用 Bash 脚本中的 time 命令来统计命令执行时间在日常的开发和运维过程中,性能监控和优化是不

hdu1496(用hash思想统计数目)

作为一个刚学hash的孩子,感觉这道题目很不错,灵活的运用的数组的下标。 解题步骤:如果用常规方法解,那么时间复杂度为O(n^4),肯定会超时,然后参考了网上的解题方法,将等式分成两个部分,a*x1^2+b*x2^2和c*x3^2+d*x4^2, 各自作为数组的下标,如果两部分相加为0,则满足等式; 代码如下: #include<iostream>#include<algorithm

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖