烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

2024-09-09 16:44

本文主要是介绍烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍:

数据集名称:烟火目标检测数据集

数据集规模:
  • 图片数量:7800张
  • 类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。
  • 格式:图像文件通常为JPEG或PNG格式;标注文件可能为XML(VOC格式)或TXT(YOLO格式)。
标注信息:
  • VOC格式:每张图片对应一个XML文件,其中包含了图像的基本信息(如宽度、高度)、每个目标的边界框坐标(xmin, ymin, xmax, ymax)以及类别标签。
  • YOLO格式:每张图片对应一个TXT文件,每行包含一个目标的标注信息,格式为:<类别> <中心x坐标> <中心y坐标> <宽度> <高度>,所有坐标值都归一化到[0, 1]区间内。
数据集特点:
  • 多样性和覆盖范围:数据集涵盖各种烟火种类,包括但不限于常见的烟花、焰火、信号弹等,确保了模型的泛化能力。
  • 环境多样性:图像采集自不同的时间和地点,包括白天和夜晚,晴天和雨天等不同天气条件下的烟火场景,有助于模型学习在各种环境下的烟火特征。
  • 高质量标注:每个目标都被精确标注,确保了数据的质量,有助于提高模型的检测精度。
  • 兼容性:提供了两种流行的标注格式(VOC和YOLO),使得数据集可以无缝集成到现有的目标检测框架中。

应用场景:
  • 公共安全:在公共场所如节日庆典、体育赛事等活动中,及时发现未经授权的烟火燃放,保障人群安全。
  • 事件管理:在大型活动期间,用于监控和记录烟火表演,确保活动顺利进行。
  • 研究与开发:为研究人员提供丰富的数据资源,用于开发和测试新的烟火检测算法。
使用建议:
  • 数据清洗:虽然数据集经过精心准备,但在使用前最好进行一次数据清洗,确保没有错误或异常的标注。
  • 模型训练:可以使用这些数据来训练YOLOv8、Faster R-CNN等目标检测模型,以达到最佳的烟火检测效果。
  • 验证与测试:保留一部分数据作为验证集和测试集,用于评估模型的性能。

此数据集为烟火目标检测的研究和应用提供了坚实的基础,有助于推动相关领域的技术进步和发展。

这篇关于烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1151715

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

pandas数据过滤

Pandas 数据过滤方法 Pandas 提供了多种方法来过滤数据,可以根据不同的条件进行筛选。以下是一些常见的 Pandas 数据过滤方法,结合实例进行讲解,希望能帮你快速理解。 1. 基于条件筛选行 可以使用布尔索引来根据条件过滤行。 import pandas as pd# 创建示例数据data = {'Name': ['Alice', 'Bob', 'Charlie', 'Dav

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者