PyTorch nn.MSELoss() 均方误差损失函数详解和要点提醒

2024-06-24 01:44

本文主要是介绍PyTorch nn.MSELoss() 均方误差损失函数详解和要点提醒,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • nn.MSELoss() 均方误差损失函数
    • 参数
    • 数学公式
      • 元素版本
    • 要点
    • 附录
  • 参考链接

nn.MSELoss() 均方误差损失函数

torch.nn.MSELoss(size_average=None, reduce=None, reduction='mean')

Creates a criterion that measures the mean squared error (squared L2 norm) between each element in the input x x x and target y y y.

计算输入和目标之间每个元素的均方误差(平方 L2 范数)。

参数

  • size_average (bool, 可选):
    • 已弃用。请参阅 reduction 参数。
    • 默认情况下,损失在批次中的每个损失元素上取平均(True);否则(False),在每个小批次中对损失求和。
    • reduceFalse 时忽略该参数。
    • 默认值是 True
  • reduce (bool, 可选):
    • 已弃用。请参阅 reduction 参数。
    • 默认情况下,损失根据 size_average 参数进行平均或求和。
    • reduceFalse 时,返回每个批次元素的损失,并忽略 size_average 参数。
    • 默认值是 True
  • reduction (str, 可选):
    • 指定应用于输出的归约方式。
    • 可选值为 'none''mean''sum'
      • 'none':不进行归约。
      • 'mean':输出的和除以输出的元素总数。
      • 'sum':输出的元素求和。
    • 注意:size_averagereduce 参数正在被弃用,同时指定这些参数中的任何一个都会覆盖 reduction 参数。
    • 默认值是 'mean'

数学公式

附录部分会验证下述公式和代码的一致性。

假设有 N N N 个样本,每个样本的输入为 x n x_n xn,目标为 y n y_n yn。均方误差损失的计算步骤如下:

  1. 单个样本的损失
    计算每个样本的均方误差:
    l n = ( x n − y n ) 2 l_n = (x_n - y_n)^2 ln=(xnyn)2
    其中 l n l_n ln 是第 n n n 个样本的损失。
  2. 总损失
    计算所有样本的平均损失(reduction 参数默认为 'mean'):
    L = 1 N ∑ n = 1 N l n = 1 N ∑ n = 1 N ( x n − y n ) 2 \mathcal{L} = \frac{1}{N} \sum_{n=1}^{N} l_n = \frac{1}{N} \sum_{n=1}^{N} (x_n - y_n)^2 L=N1n=1Nln=N1n=1N(xnyn)2
    如果 reduction 参数为 'sum',总损失为所有样本损失的和:
    L = ∑ n = 1 N l n = ∑ n = 1 N ( x n − y n ) 2 \mathcal{L} = \sum_{n=1}^{N} l_n = \sum_{n=1}^{N} (x_n - y_n)^2 L=n=1Nln=n=1N(xnyn)2
    如果 reduction 参数为 'none',则返回每个样本的损失 l n l_n ln 组成的张量:
    L = [ l 1 , l 2 , … , l N ] = [ ( x 1 − y 1 ) 2 , ( x 2 − y 2 ) 2 , … , ( x N − y N ) 2 ] \mathcal{L} = [l_1, l_2, \ldots, l_N] = [(x_1 - y_1)^2, (x_2 - y_2)^2, \ldots, (x_N - y_N)^2] L=[l1,l2,,lN]=[(x1y1)2,(x2y2)2,,(xNyN)2]

元素版本

假设输入张量 x \mathbf{x} x 和目标张量 y \mathbf{y} y 具有相同的形状,每个张量包含 N N N 个元素。均方误差损失的计算步骤如下:

  1. 单个元素的损失
    计算每个元素的均方误差:
    l i j = ( x i j − y i j ) 2 l_{ij} = (x_{ij} - y_{ij})^2 lij=(xijyij)2
    其中 l i j l_{ij} lij 是输入张量和目标张量在位置 ( i , j ) (i, j) (i,j) 的元素损失。
  2. 总损失
    计算所有元素的平均损失(reduction 参数默认为 'mean'):
    L = 1 N ∑ i , j l i j = 1 N ∑ i , j ( x i j − y i j ) 2 \mathcal{L} = \frac{1}{N} \sum_{i,j} l_{ij} = \frac{1}{N} \sum_{i,j} (x_{ij} - y_{ij})^2 L=N1i,jlij=N1i,j(xijyij)2
    如果 reduction 参数为 'sum',总损失为所有元素损失的和:
    L = ∑ i , j l i j = ∑ i , j ( x i j − y i j ) 2 \mathcal{L} = \sum_{i,j} l_{ij} = \sum_{i,j} (x_{ij} - y_{ij})^2 L=i,jlij=i,j(xijyij)2
    如果 reduction 参数为 'none',则返回每个元素的损失 l i j l_{ij} lij 组成的张量:
    L = { l i j } = { ( x i j − y i j ) 2 } \mathcal{L} = \{l_{ij}\} = \{(x_{ij} - y_{ij})^2 \} L={lij}={(xijyij)2}

要点

  1. nn.MSELoss() 接受的输入和目标应具有相同的形状和类型。
    使用示例
    import torch
    import torch.nn as nn# 定义输入和目标张量
    input = torch.tensor([[1.0, 2.0], [3.0, 4.0]], requires_grad=True)
    target = torch.tensor([[1.5, 2.5], [3.5, 4.5]])# 使用 nn.MSELoss 计算损失
    criterion = nn.MSELoss()
    loss = criterion(input, target)print(f"Loss using nn.MSELoss: {loss.item()}")
    
    >>> Loss using nn.MSELoss: 0.25
    
  2. nn.MSELoss()reduction 参数指定了如何归约输出损失。默认值是 'mean',计算的是所有样本的平均损失。
    • 如果 reduction 参数为 'mean',损失是所有样本损失的平均值。
    • 如果 reduction 参数为 'sum',损失是所有样本损失的和。
    • 如果 reduction 参数为 'none',则返回每个样本的损失组成的张量。
      代码示例
    import torch
    import torch.nn as nn# 定义输入和目标张量
    input = torch.tensor([[1.0, 2.0], [3.0, 4.0]], requires_grad=True)
    target = torch.tensor([[1.5, 2.5], [3.5, 4.5]])# 使用 nn.MSELoss 计算损失(reduction='mean')
    criterion_mean = nn.MSELoss(reduction='mean')
    loss_mean = criterion_mean(input, target)
    print(f"Loss with reduction='mean': {loss_mean.item()}")# 使用 nn.MSELoss 计算损失(reduction='sum')
    criterion_sum = nn.MSELoss(reduction='sum')
    loss_sum = criterion_sum(input, target)
    print(f"Loss with reduction='sum': {loss_sum.item()}")# 使用 nn.MSELoss 计算损失(reduction='none')
    criterion_none = nn.MSELoss(reduction='none')
    loss_none = criterion_none(input, target)
    print(f"Loss with reduction='none': {loss_none}")
    
    >>> Loss with reduction='mean': 0.25
    >>> Loss with reduction='sum': 1.0
    >>> Loss with reduction='none': tensor([[0.2500, 0.2500],[0.2500, 0.2500]], grad_fn=<MseLossBackward0>)
    

附录

用于验证数学公式和函数实际运行的一致性

import torch
import torch.nn.functional as F# 假设有两个样本,每个样本有两个维度
input = torch.tensor([[1.0, 2.0], [3.0, 4.0]], requires_grad=True)
target = torch.tensor([[1.5, 2.5], [3.5, 4.5]])# 根据公式实现均方误差损失
def mse_loss(input, target):return ((input - target) ** 2).mean()# 使用 nn.MSELoss 计算损失
criterion = torch.nn.MSELoss(reduction='mean')
loss_torch = criterion(input, target)# 使用根据公式实现的均方误差损失
loss_custom = mse_loss(input, target)# 打印结果
print("PyTorch 计算的均方误差损失:", loss_torch.item())
print("根据公式实现的均方误差损失:", loss_custom.item())# 验证结果是否相等
assert torch.isclose(loss_torch, loss_custom), "数学公式验证失败"
>>> PyTorch 计算的均方误差损失: 0.25
>>> 根据公式实现的均方误差损失: 0.25

输出没有抛出 AssertionError,验证通过。

参考链接

MSELoss - Docs

这篇关于PyTorch nn.MSELoss() 均方误差损失函数详解和要点提醒的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1088849

相关文章

如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解

《如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解》:本文主要介绍如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别的相关资料,描述了如何使用海康威视设备网络SD... 目录前言开发流程问题和解决方案dll库加载不到的问题老旧版本sdk不兼容的问题关键实现流程总结前言作为

SQL 中多表查询的常见连接方式详解

《SQL中多表查询的常见连接方式详解》本文介绍SQL中多表查询的常见连接方式,包括内连接(INNERJOIN)、左连接(LEFTJOIN)、右连接(RIGHTJOIN)、全外连接(FULLOUTER... 目录一、连接类型图表(ASCII 形式)二、前置代码(创建示例表)三、连接方式代码示例1. 内连接(I

Go路由注册方法详解

《Go路由注册方法详解》Go语言中,http.NewServeMux()和http.HandleFunc()是两种不同的路由注册方式,前者创建独立的ServeMux实例,适合模块化和分层路由,灵活性高... 目录Go路由注册方法1. 路由注册的方式2. 路由器的独立性3. 灵活性4. 启动服务器的方式5.

Python itertools中accumulate函数用法及使用运用详细讲解

《Pythonitertools中accumulate函数用法及使用运用详细讲解》:本文主要介绍Python的itertools库中的accumulate函数,该函数可以计算累积和或通过指定函数... 目录1.1前言:1.2定义:1.3衍生用法:1.3Leetcode的实际运用:总结 1.1前言:本文将详

Java中八大包装类举例详解(通俗易懂)

《Java中八大包装类举例详解(通俗易懂)》:本文主要介绍Java中的包装类,包括它们的作用、特点、用途以及如何进行装箱和拆箱,包装类还提供了许多实用方法,如转换、获取基本类型值、比较和类型检测,... 目录一、包装类(Wrapper Class)1、简要介绍2、包装类特点3、包装类用途二、装箱和拆箱1、装

Go语言中三种容器类型的数据结构详解

《Go语言中三种容器类型的数据结构详解》在Go语言中,有三种主要的容器类型用于存储和操作集合数据:本文主要介绍三者的使用与区别,感兴趣的小伙伴可以跟随小编一起学习一下... 目录基本概念1. 数组(Array)2. 切片(Slice)3. 映射(Map)对比总结注意事项基本概念在 Go 语言中,有三种主要

Python中Markdown库的使用示例详解

《Python中Markdown库的使用示例详解》Markdown库是一个用于处理Markdown文本的Python工具,这篇文章主要为大家详细介绍了Markdown库的具体使用,感兴趣的... 目录一、背景二、什么是 Markdown 库三、如何安装这个库四、库函数使用方法1. markdown.mark

PLsql Oracle 下载安装图文过程详解

《PLsqlOracle下载安装图文过程详解》PL/SQLDeveloper是一款用于开发Oracle数据库的集成开发环境,可以通过官网下载安装配置,并通过配置tnsnames.ora文件及环境变... 目录一、PL/SQL Developer 简介二、PL/SQL Developer 安装及配置详解1.下

使用Navicat工具比对两个数据库所有表结构的差异案例详解

《使用Navicat工具比对两个数据库所有表结构的差异案例详解》:本文主要介绍如何使用Navicat工具对比两个数据库test_old和test_new,并生成相应的DDLSQL语句,以便将te... 目录概要案例一、如图两个数据库test_old和test_new进行比较:二、开始比较总结概要公司存在多

轻松上手MYSQL之JSON函数实现高效数据查询与操作

《轻松上手MYSQL之JSON函数实现高效数据查询与操作》:本文主要介绍轻松上手MYSQL之JSON函数实现高效数据查询与操作的相关资料,MySQL提供了多个JSON函数,用于处理和查询JSON数... 目录一、jsON_EXTRACT 提取指定数据二、JSON_UNQUOTE 取消双引号三、JSON_KE