PyTorch nn.MSELoss() 均方误差损失函数详解和要点提醒

2024-06-24 01:44

本文主要是介绍PyTorch nn.MSELoss() 均方误差损失函数详解和要点提醒,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • nn.MSELoss() 均方误差损失函数
    • 参数
    • 数学公式
      • 元素版本
    • 要点
    • 附录
  • 参考链接

nn.MSELoss() 均方误差损失函数

torch.nn.MSELoss(size_average=None, reduce=None, reduction='mean')

Creates a criterion that measures the mean squared error (squared L2 norm) between each element in the input x x x and target y y y.

计算输入和目标之间每个元素的均方误差(平方 L2 范数)。

参数

  • size_average (bool, 可选):
    • 已弃用。请参阅 reduction 参数。
    • 默认情况下,损失在批次中的每个损失元素上取平均(True);否则(False),在每个小批次中对损失求和。
    • reduceFalse 时忽略该参数。
    • 默认值是 True
  • reduce (bool, 可选):
    • 已弃用。请参阅 reduction 参数。
    • 默认情况下,损失根据 size_average 参数进行平均或求和。
    • reduceFalse 时,返回每个批次元素的损失,并忽略 size_average 参数。
    • 默认值是 True
  • reduction (str, 可选):
    • 指定应用于输出的归约方式。
    • 可选值为 'none''mean''sum'
      • 'none':不进行归约。
      • 'mean':输出的和除以输出的元素总数。
      • 'sum':输出的元素求和。
    • 注意:size_averagereduce 参数正在被弃用,同时指定这些参数中的任何一个都会覆盖 reduction 参数。
    • 默认值是 'mean'

数学公式

附录部分会验证下述公式和代码的一致性。

假设有 N N N 个样本,每个样本的输入为 x n x_n xn,目标为 y n y_n yn。均方误差损失的计算步骤如下:

  1. 单个样本的损失
    计算每个样本的均方误差:
    l n = ( x n − y n ) 2 l_n = (x_n - y_n)^2 ln=(xnyn)2
    其中 l n l_n ln 是第 n n n 个样本的损失。
  2. 总损失
    计算所有样本的平均损失(reduction 参数默认为 'mean'):
    L = 1 N ∑ n = 1 N l n = 1 N ∑ n = 1 N ( x n − y n ) 2 \mathcal{L} = \frac{1}{N} \sum_{n=1}^{N} l_n = \frac{1}{N} \sum_{n=1}^{N} (x_n - y_n)^2 L=N1n=1Nln=N1n=1N(xnyn)2
    如果 reduction 参数为 'sum',总损失为所有样本损失的和:
    L = ∑ n = 1 N l n = ∑ n = 1 N ( x n − y n ) 2 \mathcal{L} = \sum_{n=1}^{N} l_n = \sum_{n=1}^{N} (x_n - y_n)^2 L=n=1Nln=n=1N(xnyn)2
    如果 reduction 参数为 'none',则返回每个样本的损失 l n l_n ln 组成的张量:
    L = [ l 1 , l 2 , … , l N ] = [ ( x 1 − y 1 ) 2 , ( x 2 − y 2 ) 2 , … , ( x N − y N ) 2 ] \mathcal{L} = [l_1, l_2, \ldots, l_N] = [(x_1 - y_1)^2, (x_2 - y_2)^2, \ldots, (x_N - y_N)^2] L=[l1,l2,,lN]=[(x1y1)2,(x2y2)2,,(xNyN)2]

元素版本

假设输入张量 x \mathbf{x} x 和目标张量 y \mathbf{y} y 具有相同的形状,每个张量包含 N N N 个元素。均方误差损失的计算步骤如下:

  1. 单个元素的损失
    计算每个元素的均方误差:
    l i j = ( x i j − y i j ) 2 l_{ij} = (x_{ij} - y_{ij})^2 lij=(xijyij)2
    其中 l i j l_{ij} lij 是输入张量和目标张量在位置 ( i , j ) (i, j) (i,j) 的元素损失。
  2. 总损失
    计算所有元素的平均损失(reduction 参数默认为 'mean'):
    L = 1 N ∑ i , j l i j = 1 N ∑ i , j ( x i j − y i j ) 2 \mathcal{L} = \frac{1}{N} \sum_{i,j} l_{ij} = \frac{1}{N} \sum_{i,j} (x_{ij} - y_{ij})^2 L=N1i,jlij=N1i,j(xijyij)2
    如果 reduction 参数为 'sum',总损失为所有元素损失的和:
    L = ∑ i , j l i j = ∑ i , j ( x i j − y i j ) 2 \mathcal{L} = \sum_{i,j} l_{ij} = \sum_{i,j} (x_{ij} - y_{ij})^2 L=i,jlij=i,j(xijyij)2
    如果 reduction 参数为 'none',则返回每个元素的损失 l i j l_{ij} lij 组成的张量:
    L = { l i j } = { ( x i j − y i j ) 2 } \mathcal{L} = \{l_{ij}\} = \{(x_{ij} - y_{ij})^2 \} L={lij}={(xijyij)2}

要点

  1. nn.MSELoss() 接受的输入和目标应具有相同的形状和类型。
    使用示例
    import torch
    import torch.nn as nn# 定义输入和目标张量
    input = torch.tensor([[1.0, 2.0], [3.0, 4.0]], requires_grad=True)
    target = torch.tensor([[1.5, 2.5], [3.5, 4.5]])# 使用 nn.MSELoss 计算损失
    criterion = nn.MSELoss()
    loss = criterion(input, target)print(f"Loss using nn.MSELoss: {loss.item()}")
    
    >>> Loss using nn.MSELoss: 0.25
    
  2. nn.MSELoss()reduction 参数指定了如何归约输出损失。默认值是 'mean',计算的是所有样本的平均损失。
    • 如果 reduction 参数为 'mean',损失是所有样本损失的平均值。
    • 如果 reduction 参数为 'sum',损失是所有样本损失的和。
    • 如果 reduction 参数为 'none',则返回每个样本的损失组成的张量。
      代码示例
    import torch
    import torch.nn as nn# 定义输入和目标张量
    input = torch.tensor([[1.0, 2.0], [3.0, 4.0]], requires_grad=True)
    target = torch.tensor([[1.5, 2.5], [3.5, 4.5]])# 使用 nn.MSELoss 计算损失(reduction='mean')
    criterion_mean = nn.MSELoss(reduction='mean')
    loss_mean = criterion_mean(input, target)
    print(f"Loss with reduction='mean': {loss_mean.item()}")# 使用 nn.MSELoss 计算损失(reduction='sum')
    criterion_sum = nn.MSELoss(reduction='sum')
    loss_sum = criterion_sum(input, target)
    print(f"Loss with reduction='sum': {loss_sum.item()}")# 使用 nn.MSELoss 计算损失(reduction='none')
    criterion_none = nn.MSELoss(reduction='none')
    loss_none = criterion_none(input, target)
    print(f"Loss with reduction='none': {loss_none}")
    
    >>> Loss with reduction='mean': 0.25
    >>> Loss with reduction='sum': 1.0
    >>> Loss with reduction='none': tensor([[0.2500, 0.2500],[0.2500, 0.2500]], grad_fn=<MseLossBackward0>)
    

附录

用于验证数学公式和函数实际运行的一致性

import torch
import torch.nn.functional as F# 假设有两个样本,每个样本有两个维度
input = torch.tensor([[1.0, 2.0], [3.0, 4.0]], requires_grad=True)
target = torch.tensor([[1.5, 2.5], [3.5, 4.5]])# 根据公式实现均方误差损失
def mse_loss(input, target):return ((input - target) ** 2).mean()# 使用 nn.MSELoss 计算损失
criterion = torch.nn.MSELoss(reduction='mean')
loss_torch = criterion(input, target)# 使用根据公式实现的均方误差损失
loss_custom = mse_loss(input, target)# 打印结果
print("PyTorch 计算的均方误差损失:", loss_torch.item())
print("根据公式实现的均方误差损失:", loss_custom.item())# 验证结果是否相等
assert torch.isclose(loss_torch, loss_custom), "数学公式验证失败"
>>> PyTorch 计算的均方误差损失: 0.25
>>> 根据公式实现的均方误差损失: 0.25

输出没有抛出 AssertionError,验证通过。

参考链接

MSELoss - Docs

这篇关于PyTorch nn.MSELoss() 均方误差损失函数详解和要点提醒的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1088849

相关文章

Spring Security基于数据库验证流程详解

Spring Security 校验流程图 相关解释说明(认真看哦) AbstractAuthenticationProcessingFilter 抽象类 /*** 调用 #requiresAuthentication(HttpServletRequest, HttpServletResponse) 决定是否需要进行验证操作。* 如果需要验证,则会调用 #attemptAuthentica

hdu1171(母函数或多重背包)

题意:把物品分成两份,使得价值最接近 可以用背包,或者是母函数来解,母函数(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v) 其中指数为价值,每一项的数目为(该物品数+1)个 代码如下: #include<iostream>#include<algorithm>

OpenHarmony鸿蒙开发( Beta5.0)无感配网详解

1、简介 无感配网是指在设备联网过程中无需输入热点相关账号信息,即可快速实现设备配网,是一种兼顾高效性、可靠性和安全性的配网方式。 2、配网原理 2.1 通信原理 手机和智能设备之间的信息传递,利用特有的NAN协议实现。利用手机和智能设备之间的WiFi 感知订阅、发布能力,实现了数字管家应用和设备之间的发现。在完成设备间的认证和响应后,即可发送相关配网数据。同时还支持与常规Sof

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time

6.1.数据结构-c/c++堆详解下篇(堆排序,TopK问题)

上篇:6.1.数据结构-c/c++模拟实现堆上篇(向下,上调整算法,建堆,增删数据)-CSDN博客 本章重点 1.使用堆来完成堆排序 2.使用堆解决TopK问题 目录 一.堆排序 1.1 思路 1.2 代码 1.3 简单测试 二.TopK问题 2.1 思路(求最小): 2.2 C语言代码(手写堆) 2.3 C++代码(使用优先级队列 priority_queue)

K8S(Kubernetes)开源的容器编排平台安装步骤详解

K8S(Kubernetes)是一个开源的容器编排平台,用于自动化部署、扩展和管理容器化应用程序。以下是K8S容器编排平台的安装步骤、使用方式及特点的概述: 安装步骤: 安装Docker:K8S需要基于Docker来运行容器化应用程序。首先要在所有节点上安装Docker引擎。 安装Kubernetes Master:在集群中选择一台主机作为Master节点,安装K8S的控制平面组件,如AP

C++操作符重载实例(独立函数)

C++操作符重载实例,我们把坐标值CVector的加法进行重载,计算c3=c1+c2时,也就是计算x3=x1+x2,y3=y1+y2,今天我们以独立函数的方式重载操作符+(加号),以下是C++代码: c1802.cpp源代码: D:\YcjWork\CppTour>vim c1802.cpp #include <iostream>using namespace std;/*** 以独立函数

嵌入式Openharmony系统构建与启动详解

大家好,今天主要给大家分享一下,如何构建Openharmony子系统以及系统的启动过程分解。 第一:OpenHarmony系统构建      首先熟悉一下,构建系统是一种自动化处理工具的集合,通过将源代码文件进行一系列处理,最终生成和用户可以使用的目标文件。这里的目标文件包括静态链接库文件、动态链接库文件、可执行文件、脚本文件、配置文件等。      我们在编写hellowor

LabVIEW FIFO详解

在LabVIEW的FPGA开发中,FIFO(先入先出队列)是常用的数据传输机制。通过配置FIFO的属性,工程师可以在FPGA和主机之间,或不同FPGA VIs之间进行高效的数据传输。根据具体需求,FIFO有多种类型与实现方式,包括目标范围内FIFO(Target-Scoped)、DMA FIFO以及点对点流(Peer-to-Peer)。 FIFO类型 **目标范围FIFO(Target-Sc

019、JOptionPane类的常用静态方法详解

目录 JOptionPane类的常用静态方法详解 1. showInputDialog()方法 1.1基本用法 1.2带有默认值的输入框 1.3带有选项的输入对话框 1.4自定义图标的输入对话框 2. showConfirmDialog()方法 2.1基本用法 2.2自定义按钮和图标 2.3带有自定义组件的确认对话框 3. showMessageDialog()方法 3.1