sklearn【MSE】均方误差,原理及学习代码!

2024-04-22 20:04

本文主要是介绍sklearn【MSE】均方误差,原理及学习代码!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、MSE 介绍

均方误差(Mean Squared Error,MSE)是回归问题中常用的一个评估指标,它通过计算预测值与实际值之间差异的平方的平均值来评估模型的精度。

在Python的机器学习库sklearn中,我们可以使用内置的mean_squared_error函数来计算MSE。

具体来说,MSE的计算步骤如下:

  1. 收集数据:首先,我们需要一组包含实际目标值(真实值)和模型预测值的数据集。这些数据通常来自测试集,用于评估模型在未见过的数据上的性能。
  2. 计算残差:对于数据集中的每一对实际值和预测值,我们计算它们之间的差值,这个差值被称为残差(residual)。残差反映了模型预测与实际结果之间的偏差。
  3. 计算残差平方:接下来,我们对每个残差进行平方。这一步是为了消除负值的影响,因为我们关心的是偏差的大小,而不仅仅是方向。平方操作确保了所有的偏差都是正值,并且较大的偏差会被赋予更高的权重。
  4. 计算平均值:最后,我们计算所有残差平方的平均值。这是通过将所有残差平方相加,然后除以数据点的数量来完成的。这个平均值就是均方误差(MSE)。

数学上,MSE的计算公式可以表示为:

M S E = 1 n ∑ i = 1 n ( y i − y ^ i ) 2 MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 MSE=n1i=1n(yiy^i)2

其中:

  • n n n 是数据点的数量。
  • y i y_i yi 是第 i i i 个数据点的实际目标值(真实值)。
  • y ^ i \hat{y}_i y^i 是模型对第 i i i 个数据点的预测值。

MSE的值越小,说明模型的预测性能越好,因为它意味着模型的预测值与实际值之间的偏差越小。然而,需要注意的是,MSE对较大的偏差非常敏感,因此当数据中存在较大的异常值时,MSE可能会受到较大的影响。

二、案例学习

下面是一个简单的示例,展示如何使用sklearn计算MSE:

首先,我们需要导入必要的库和数据集。在这个例子中,我们将使用sklearn自带的波士顿房价数据集。

from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
from sklearn.linear_model import LinearRegression
from sklearn.datasets import fetch_california_housing# 加载房价数据集
housing = fetch_california_housing()
X = housing.data
y = housing.target# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

接下来,我们创建一个线性回归模型,并使用训练数据进行训练。

# 创建线性回归模型
model = LinearRegression()# 使用训练数据进行训练
model.fit(X_train, y_train)

然后,我们使用训练好的模型对测试集进行预测,并计算预测值与实际值之间的MSE。

# 对测试集进行预测
y_pred = model.predict(X_test)# 计算MSE
mse = mean_squared_error(y_test, y_pred)
print(f'Mean Squared Error: {mse}')# Mean Squared Error: 0.5558915986952422

在这个例子中,我们使用了线性回归模型进行预测,并计算了预测值与实际值之间的MSE。你可以根据需要使用其他回归模型,如决策树回归、随机森林回归等,并计算相应的MSE。

三、总结

需要注意的是,MSE越小表示模型预测效果越好。但需要注意的是,MSE的大小也会受到数据规模和目标变量量纲的影响,在实际应用中,MSE常常与其他回归模型指标一起使用,如均方根误差(RMSE)或决定系数(R²),以提供对模型性能的全面评估。这些指标可以从不同角度反映模型的性能,帮助我们更好地理解和改进模型。

这篇关于sklearn【MSE】均方误差,原理及学习代码!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/926727

相关文章

Python Transformers库(NLP处理库)案例代码讲解

《PythonTransformers库(NLP处理库)案例代码讲解》本文介绍transformers库的全面讲解,包含基础知识、高级用法、案例代码及学习路径,内容经过组织,适合不同阶段的学习者,对... 目录一、基础知识1. Transformers 库简介2. 安装与环境配置3. 快速上手示例二、核心模

Java的栈与队列实现代码解析

《Java的栈与队列实现代码解析》栈是常见的线性数据结构,栈的特点是以先进后出的形式,后进先出,先进后出,分为栈底和栈顶,栈应用于内存的分配,表达式求值,存储临时的数据和方法的调用等,本文给大家介绍J... 目录栈的概念(Stack)栈的实现代码队列(Queue)模拟实现队列(双链表实现)循环队列(循环数组

使用Java将DOCX文档解析为Markdown文档的代码实现

《使用Java将DOCX文档解析为Markdown文档的代码实现》在现代文档处理中,Markdown(MD)因其简洁的语法和良好的可读性,逐渐成为开发者、技术写作者和内容创作者的首选格式,然而,许多文... 目录引言1. 工具和库介绍2. 安装依赖库3. 使用Apache POI解析DOCX文档4. 将解析

C++使用printf语句实现进制转换的示例代码

《C++使用printf语句实现进制转换的示例代码》在C语言中,printf函数可以直接实现部分进制转换功能,通过格式说明符(formatspecifier)快速输出不同进制的数值,下面给大家分享C+... 目录一、printf 原生支持的进制转换1. 十进制、八进制、十六进制转换2. 显示进制前缀3. 指

Spring Boot循环依赖原理、解决方案与最佳实践(全解析)

《SpringBoot循环依赖原理、解决方案与最佳实践(全解析)》循环依赖指两个或多个Bean相互直接或间接引用,形成闭环依赖关系,:本文主要介绍SpringBoot循环依赖原理、解决方案与最... 目录一、循环依赖的本质与危害1.1 什么是循环依赖?1.2 核心危害二、Spring的三级缓存机制2.1 三

C#中async await异步关键字用法和异步的底层原理全解析

《C#中asyncawait异步关键字用法和异步的底层原理全解析》:本文主要介绍C#中asyncawait异步关键字用法和异步的底层原理全解析,本文给大家介绍的非常详细,对大家的学习或工作具有一... 目录C#异步编程一、异步编程基础二、异步方法的工作原理三、代码示例四、编译后的底层实现五、总结C#异步编程

使用Python实现全能手机虚拟键盘的示例代码

《使用Python实现全能手机虚拟键盘的示例代码》在数字化办公时代,你是否遇到过这样的场景:会议室投影电脑突然键盘失灵、躺在沙发上想远程控制书房电脑、或者需要给长辈远程协助操作?今天我要分享的Pyth... 目录一、项目概述:不止于键盘的远程控制方案1.1 创新价值1.2 技术栈全景二、需求实现步骤一、需求

Java中Date、LocalDate、LocalDateTime、LocalTime、时间戳之间的相互转换代码

《Java中Date、LocalDate、LocalDateTime、LocalTime、时间戳之间的相互转换代码》:本文主要介绍Java中日期时间转换的多种方法,包括将Date转换为LocalD... 目录一、Date转LocalDateTime二、Date转LocalDate三、LocalDateTim

Go 语言中的select语句详解及工作原理

《Go语言中的select语句详解及工作原理》在Go语言中,select语句是用于处理多个通道(channel)操作的一种控制结构,它类似于switch语句,本文给大家介绍Go语言中的select语... 目录Go 语言中的 select 是做什么的基本功能语法工作原理示例示例 1:监听多个通道示例 2:带

鸿蒙中@State的原理使用详解(HarmonyOS 5)

《鸿蒙中@State的原理使用详解(HarmonyOS5)》@State是HarmonyOSArkTS框架中用于管理组件状态的核心装饰器,其核心作用是实现数据驱动UI的响应式编程模式,本文给大家介绍... 目录一、@State在鸿蒙中是做什么的?二、@Spythontate的基本原理1. 依赖关系的收集2.