sklearn【MSE】均方误差,原理及学习代码!

2024-04-22 20:04

本文主要是介绍sklearn【MSE】均方误差,原理及学习代码!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、MSE 介绍

均方误差(Mean Squared Error,MSE)是回归问题中常用的一个评估指标,它通过计算预测值与实际值之间差异的平方的平均值来评估模型的精度。

在Python的机器学习库sklearn中,我们可以使用内置的mean_squared_error函数来计算MSE。

具体来说,MSE的计算步骤如下:

  1. 收集数据:首先,我们需要一组包含实际目标值(真实值)和模型预测值的数据集。这些数据通常来自测试集,用于评估模型在未见过的数据上的性能。
  2. 计算残差:对于数据集中的每一对实际值和预测值,我们计算它们之间的差值,这个差值被称为残差(residual)。残差反映了模型预测与实际结果之间的偏差。
  3. 计算残差平方:接下来,我们对每个残差进行平方。这一步是为了消除负值的影响,因为我们关心的是偏差的大小,而不仅仅是方向。平方操作确保了所有的偏差都是正值,并且较大的偏差会被赋予更高的权重。
  4. 计算平均值:最后,我们计算所有残差平方的平均值。这是通过将所有残差平方相加,然后除以数据点的数量来完成的。这个平均值就是均方误差(MSE)。

数学上,MSE的计算公式可以表示为:

M S E = 1 n ∑ i = 1 n ( y i − y ^ i ) 2 MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 MSE=n1i=1n(yiy^i)2

其中:

  • n n n 是数据点的数量。
  • y i y_i yi 是第 i i i 个数据点的实际目标值(真实值)。
  • y ^ i \hat{y}_i y^i 是模型对第 i i i 个数据点的预测值。

MSE的值越小,说明模型的预测性能越好,因为它意味着模型的预测值与实际值之间的偏差越小。然而,需要注意的是,MSE对较大的偏差非常敏感,因此当数据中存在较大的异常值时,MSE可能会受到较大的影响。

二、案例学习

下面是一个简单的示例,展示如何使用sklearn计算MSE:

首先,我们需要导入必要的库和数据集。在这个例子中,我们将使用sklearn自带的波士顿房价数据集。

from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
from sklearn.linear_model import LinearRegression
from sklearn.datasets import fetch_california_housing# 加载房价数据集
housing = fetch_california_housing()
X = housing.data
y = housing.target# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

接下来,我们创建一个线性回归模型,并使用训练数据进行训练。

# 创建线性回归模型
model = LinearRegression()# 使用训练数据进行训练
model.fit(X_train, y_train)

然后,我们使用训练好的模型对测试集进行预测,并计算预测值与实际值之间的MSE。

# 对测试集进行预测
y_pred = model.predict(X_test)# 计算MSE
mse = mean_squared_error(y_test, y_pred)
print(f'Mean Squared Error: {mse}')# Mean Squared Error: 0.5558915986952422

在这个例子中,我们使用了线性回归模型进行预测,并计算了预测值与实际值之间的MSE。你可以根据需要使用其他回归模型,如决策树回归、随机森林回归等,并计算相应的MSE。

三、总结

需要注意的是,MSE越小表示模型预测效果越好。但需要注意的是,MSE的大小也会受到数据规模和目标变量量纲的影响,在实际应用中,MSE常常与其他回归模型指标一起使用,如均方根误差(RMSE)或决定系数(R²),以提供对模型性能的全面评估。这些指标可以从不同角度反映模型的性能,帮助我们更好地理解和改进模型。

这篇关于sklearn【MSE】均方误差,原理及学习代码!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/926727

相关文章

SpringCloud集成AlloyDB的示例代码

《SpringCloud集成AlloyDB的示例代码》AlloyDB是GoogleCloud提供的一种高度可扩展、强性能的关系型数据库服务,它兼容PostgreSQL,并提供了更快的查询性能... 目录1.AlloyDBjavascript是什么?AlloyDB 的工作原理2.搭建测试环境3.代码工程1.

Java调用Python代码的几种方法小结

《Java调用Python代码的几种方法小结》Python语言有丰富的系统管理、数据处理、统计类软件包,因此从java应用中调用Python代码的需求很常见、实用,本文介绍几种方法从java调用Pyt... 目录引言Java core使用ProcessBuilder使用Java脚本引擎总结引言python

Java中ArrayList的8种浅拷贝方式示例代码

《Java中ArrayList的8种浅拷贝方式示例代码》:本文主要介绍Java中ArrayList的8种浅拷贝方式的相关资料,讲解了Java中ArrayList的浅拷贝概念,并详细分享了八种实现浅... 目录引言什么是浅拷贝?ArrayList 浅拷贝的重要性方法一:使用构造函数方法二:使用 addAll(

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实

JAVA利用顺序表实现“杨辉三角”的思路及代码示例

《JAVA利用顺序表实现“杨辉三角”的思路及代码示例》杨辉三角形是中国古代数学的杰出研究成果之一,是我国北宋数学家贾宪于1050年首先发现并使用的,:本文主要介绍JAVA利用顺序表实现杨辉三角的思... 目录一:“杨辉三角”题目链接二:题解代码:三:题解思路:总结一:“杨辉三角”题目链接题目链接:点击这里

SpringBoot使用注解集成Redis缓存的示例代码

《SpringBoot使用注解集成Redis缓存的示例代码》:本文主要介绍在SpringBoot中使用注解集成Redis缓存的步骤,包括添加依赖、创建相关配置类、需要缓存数据的类(Tes... 目录一、创建 Caching 配置类二、创建需要缓存数据的类三、测试方法Spring Boot 熟悉后,集成一个外

轻松掌握python的dataclass让你的代码更简洁优雅

《轻松掌握python的dataclass让你的代码更简洁优雅》本文总结了几个我在使用Python的dataclass时常用的技巧,dataclass装饰器可以帮助我们简化数据类的定义过程,包括设置默... 目录1. 传统的类定义方式2. dataclass装饰器定义类2.1. 默认值2.2. 隐藏敏感信息

opencv实现像素统计的示例代码

《opencv实现像素统计的示例代码》本文介绍了OpenCV中统计图像像素信息的常用方法和函数,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 统计像素值的基本信息2. 统计像素值的直方图3. 统计像素值的总和4. 统计非零像素的数量

IDEA常用插件之代码扫描SonarLint详解

《IDEA常用插件之代码扫描SonarLint详解》SonarLint是一款用于代码扫描的插件,可以帮助查找隐藏的bug,下载并安装插件后,右键点击项目并选择“Analyze”、“Analyzewit... 目录SonajavascriptrLint 查找隐藏的bug下载安装插件扫描代码查看结果总结Sona

Python开发围棋游戏的实例代码(实现全部功能)

《Python开发围棋游戏的实例代码(实现全部功能)》围棋是一种古老而复杂的策略棋类游戏,起源于中国,已有超过2500年的历史,本文介绍了如何用Python开发一个简单的围棋游戏,实例代码涵盖了游戏的... 目录1. 围棋游戏概述1.1 游戏规则1.2 游戏设计思路2. 环境准备3. 创建棋盘3.1 棋盘类