【推导结果】如何得到 回归均方误差 估计系数的标准误

2024-03-28 23:44

本文主要是介绍【推导结果】如何得到 回归均方误差 估计系数的标准误,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

对线性回归模型系数标准差标准误的理解

1.生成数据

yxe
3.610.63
3.42-1.38
7.631.01
7.44-1.01
11.651.38
11.46-0.63

在这里插入图片描述

2.回归

y = β 0 + β 1 x + ϵ y = \beta_{0}+\beta_{1}x+\epsilon y=β0+β1x+ϵ

y i = β 0 + β 1 x i + e i y_{i}=\beta_{0}+\beta_{1} x_{i}+e_{i} yi=β0+β1xi+ei

reg y xSource |       SS           df       MS      Number of obs   =         6
-------------+----------------------------------   F(1, 4)         =     34.60Model |   57.422285         1   57.422285   Prob > F        =    0.0042Residual |  6.63771505         4  1.65942876   R-squared       =    0.8964
-------------+----------------------------------   Adj R-squared   =    0.8705Total |  64.0600001         5      12.812   Root MSE        =    1.2882------------------------------------------------------------------------------y | Coefficient  Std. err.      t    P>|t|     [95% conf. interval]
-------------+----------------------------------------------------------------x |   1.811429   .3079359     5.88   0.004     .9564615    2.666396_cons |       1.16   1.199238     0.97   0.388    -2.169618    4.489618
------------------------------------------------------------------------------

3.计算回归的标准误差

(1)SSE\SSR\SST

S S E SSE SSE: Sum of Squares Error,
S S E = ∑ i = 1 n ( y i ^ − y i ) 2 = ∑ i = 1 n ( e i − e ˉ ) 2 SSE= \sum_{i=1}^{n}(\hat{y_{i}}-y_{i})^2 = \sum_{i=1}^{n}(e_{i}-\bar{e})^2 SSE=i=1n(yi^yi)2=i=1n(eieˉ)2
在本示例中, S S E = ( 3.6 − 2.97 ) 2 + ( 3.4 − 4.78 ) 2 + ( 7.6 − 6.95 ) 2 + ( 7.4 − 8.41 ) 2 + ( 11.6 − 10.22 ) 2 + ( 11.4 − 12.03 ) 2 = 6.637713 SSE=(3.6-2.97)^2+(3.4-4.78)^2+(7.6-6.95)^2+(7.4-8.41)^2+(11.6-10.22)^2+(11.4-12.03)^2 = 6.637713 SSE=(3.62.97)2+(3.44.78)2+(7.66.95)2+(7.48.41)2+(11.610.22)2+(11.412.03)2=6.637713

S S R SSR SSR: Sum of Squares of the Regression
S S R = ∑ i = 1 n ( y i ^ − y ˉ ) 2 SSR= \sum_{i=1}^{n}(\hat{y_{i}}-\bar{y})^2 SSR=i=1n(yi^yˉ)2
S S T SST SST: Total Sum of Squares
S S T = ∑ i = 1 n ( y i − y ˉ ) 2 SST= \sum_{i=1}^{n}(y_{i}-\bar{y})^2 SST=i=1n(yiyˉ)2

(2)MSE

回归的标准误差为:
s 2 = M S E = S S E n − K = ∑ i = 1 n ( e i − e ˉ ) 2 n − K s^{2}=MSE=\frac{SSE}{n-K}=\frac{\sum_{i=1}^{n}(e_{i}-\bar{e})^2}{n-K} s2=MSE=nKSSE=nKi=1n(eieˉ)2

s = M S E s=\sqrt{MSE} s=MSE

s 2 = 6.637713 6 − 2 = 1.6594282 ; s = 1.288188 s^2 = \frac{6.637713}{6 - 2}=1.6594282; \ \ \ \ \ \ \ s=1.288188 s2=626.637713=1.6594282;       s=1.288188

(3)SE

S β ^ = s 2 ∑ i = 1 n ( x i − x ˉ ) S_{\hat{\beta}} = \sqrt{\frac{s^2}{{\sum_{i=1}^{n}(x_{i}-\bar{x})}}} Sβ^=i=1n(xixˉ)s2

S β ^ = 1 n − 2 ∑ i = 1 n e 2 ^ ∑ i = 1 n ( x i − x ˉ ) S_{\hat{\beta}} = \sqrt{\frac{\frac{1}{n-2}\sum_{i=1}^{n} \hat{e^{2}}}{{\sum_{i=1}^{n}(x_{i}-\bar{x})}}} Sβ^=i=1n(xixˉ)n21i=1ne2^

S β ^ = 1 4 × 6.637713 ( 1 − 3.5 ) 2 + ( 2 − 3.5 ) 2 + ( 3 − 3.5 ) 2 + ( 4 − 3.5 ) 2 + ( 5 − 3.5 ) 2 + ( 6 − 3.5 ) 2 S_{\hat{\beta}} = \sqrt{\frac{\frac{1}{4} \times 6.637713}{(1-3.5)^2+(2-3.5)^2+(3-3.5)^2+(4-3.5)^2+(5-3.5)^2+(6-3.5)^2}} Sβ^=(13.5)2+(23.5)2+(33.5)2+(43.5)2+(53.5)2+(63.5)241×6.637713

SE为何会很大?

  • 样本少,分母可能大
  • 极端值多
  • X分布散(X距X均值离差太大)

Appendix

1. simulation code
clear 
set obs 6
gen y = 3.6 in 1 
replace y = 3.4 in 2 
replace y = 7.6 in 3
replace y = 7.4 in 4
replace y = 11.6 in 5
replace y = 11.4 in 6
gen x = _nreg y x
predict xbgen e = y - xb
format %9.2f xb 
format %9.2f e 
egen addtext_mean = rowmean(y xb)
forv i = 1/6{su add in `i',dglobal y`i' = r(mean)su e in `i',dglobal e`i' = r(mean)
}tw (scatter y x, mlab(y) mlabp(1)) /// (lfit y x) /// (scatter xb x, mlab(xb) mlabp(1)) /// (rspike y xb x) ,legend(off) /// text($y1 0.9 "0.63",size(vsmall) color(red)) /// text($y2 1.9 "-1.38",size(vsmall) color(red)) /// text($y3 2.9 "1.01",size(vsmall) color(red)) /// text($y4 3.9 "-1.01",size(vsmall) color(red)) /// text($y5 4.9 "1.38",size(vsmall) color(red)) /// text($y6 5.9 "-0.63",size(vsmall) color(red)) 
2.序列相关 同方差 or 异方差

对于①参数线性②不存在“严格多重共线性”③随机抽样④严格外生性⑤“球形扰动项”(条件同方差+不存在自相关)五个假定均能够满足时

OLS估计量为BLUE,最优无偏线性估计量

此时,x的协方差矩阵为:
V a r ( β 1 ^ ∣ x ) = V a r ( β 1 + ∑ ( x i − x ˉ ) e i ∑ ( x i − x ˉ ) ∣ x ) Var(\hat{\beta_{1}}|x)=Var({\beta_{1}+\frac{\sum(x_{i}-\bar{x})e_{i}}{\sum(x_{i}-\bar{x})}}|x) Var(β1^x)=Var(β1+(xixˉ)(xixˉ)eix)

V a r ( β 1 ^ ∣ x ) = V a r ( ∑ ( x i − x ˉ ) e i ∣ x ) [ ∑ ( x i − x ˉ ) 2 ] 2 Var(\hat{\beta_{1}}|x)=\frac{Var(\sum(x_{i}-\bar{x})e_{i}|x)}{[\sum(x_{i}-\bar{x})^2]^2} Var(β1^x)=[(xixˉ)2]2Var((xixˉ)eix)

  • 倘若序列无关,那么和的方差即等价于方差的和,假设 V a r ( e i ∣ x ) = σ 2 Var(e_i|x)=\sigma^2 Var(eix)=σ2

KaTeX parse error: Unknown column alignment: * at position 71: … \begin{array}{*̲*lr**} …

  • 序列相关:

σ 2 ^ = ∑ e i 2 n − k − 1 \hat{\sigma^2}=\frac{\sum e_{i}^2}{n-k-1} σ2^=nk1ei2

3.calculate SE in matlab
sqrt(inv(X'*X)*1.6594282)

这篇关于【推导结果】如何得到 回归均方误差 估计系数的标准误的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/857028

相关文章

气象站的种类和应用范围可以根据不同的分类标准进行详细的划分和描述

气象站的种类和应用范围可以根据不同的分类标准进行详细的划分和描述。以下是从不同角度对气象站的种类和应用范围的介绍: 一、气象站的种类 根据用途和安装环境分类: 农业气象站:专为农业生产服务,监测土壤温度、湿度等参数,为农业生产提供科学依据。交通气象站:用于公路、铁路、机场等交通场所的气象监测,提供实时气象数据以支持交通运营和调度。林业气象站:监测林区风速、湿度、温度等气象要素,为林区保护和

C++标准模板库STL介绍

STL的六大组成部分 STL(Standard Template Library)是 C++ 标准库中的一个重要组成部分,提供了丰富的通用数据结构和算法,使得 C++ 编程变得更加高效和方便。STL 包括了 6 大类组件,分别是算法(Algorithm)、容器(Container)、空间分配器(Allocator)、迭代器(Iterator)、函数对象(Functor)、适配器(Adapter)

直接得到Json串,转换为字典

0.新创建一个json文件,把json串拷贝到里面 1.先通过MainBundle找到资源对应的路径 2.将文件转换为NSData 3.通过NSJSonSerization得到字典 NSString*fileName=[[NSBundle mainBundle] pathForResource:@"myJson" ofType:@"json"];           NS

线性回归(Linear Regression)原理详解及Python代码示例

一、线性回归原理详解         线性回归是一种基本的统计方法,用于预测因变量(目标变量)与一个或多个自变量(特征变量)之间的线性关系。线性回归模型通过拟合一条直线(在多变量情况下是一条超平面)来最小化预测值与真实值之间的误差。 1. 线性回归模型         对于单变量线性回归,模型的表达式为:         其中: y是目标变量。x是特征变量。β0是截距项(偏置)。β1

【剖析】为什么说RBF神经网络的误差为0

本文来自《老饼讲解-BP神经网络》https://www.bbbdata.com/ 机器学习中的模型非常的多,但如果要问有没有这样的一个模型,它的训练误差为0,那么就非RBF神经网络莫属了!下面我们来聊聊,为什么RBF神经网络的训练误差为0。 一、RBF神经网络是什么 知道RBF神经网络的人都知道,但不知道RBF神经网络的人还是不知道。所以简单提一下,RBF神经网络是一个什么东西。

【论文精读】分类扩散模型:重振密度比估计(Revitalizing Density Ratio Estimation)

文章目录 一、文章概览(一)问题的提出(二)文章工作 二、理论背景(一)密度比估计DRE(二)去噪扩散模型 三、方法(一)推导分类和去噪之间的关系(二)组合训练方法(三)一步精确的似然计算 四、实验(一)使用两种损失对于实现最佳分类器的重要性(二)去噪结果、图像质量和负对数似然 论文:Classification Diffusion Models: Revitalizing

基于协方差信息的Massive MIMO信道估计算法性能研究

1. 引言 随着移动互联网不断发展,人们对通信的速率和可靠性的要求越来越高[1]。目前第四代移动通信系统已经逐渐商用,研究人员开始着手研究下一代移动通信系统相关技术[2][3]。在下一代移动通信系统中要求下行速率达到10Gbps,这就要求我们使用更先进的技术和更宽的系统带宽。MIMO技术由于可以在不增加系统带宽和功率的前提下,成倍的提升系统容量和可靠性,已经广泛应用于各种无线通信系统中,但仅采用

PyTorch nn.MSELoss() 均方误差损失函数详解和要点提醒

文章目录 nn.MSELoss() 均方误差损失函数参数数学公式元素版本 要点附录 参考链接 nn.MSELoss() 均方误差损失函数 torch.nn.MSELoss(size_average=None, reduce=None, reduction='mean') Creates a criterion that measures the mean squared err

基于CDMA的多用户水下无线光通信(2)——系统模型和基于子空间的延时估计

本文首先介绍了基于CDMA的多用户UOWC系统模型,并给出了多用户收发信号的数学模型。然后介绍基于子空间的延时估计算法,该算法只需要已知所有用户的扩频码,然后根据扩频波形的循环移位在观测空间的信号子空间上的投影进行延时估计。 1、基于CDMA的多用户UOWC系统模型   首先介绍基于CDMA的多用户UOWC系统模型,系统框图如下图所示。   该系统包括发送端、UOWC信道和接收端。该系统

机器学习回归预测方法介绍:优缺点及适用情况

机器学习中的回归任务是预测连续变量的值,这在金融、医疗、市场分析等领域有着广泛的应用。本文将介绍几种常见的机器学习回归方法,探讨它们的基本原理、优缺点及适用情况。 目录 1. 线性回归(Linear Regression) 2. 多项式回归(Polynomial Regression) 3. 决策树回归(Decision Tree Regression) 4. 随机森林回