【推导结果】如何得到 回归均方误差 估计系数的标准误

2024-03-28 23:44

本文主要是介绍【推导结果】如何得到 回归均方误差 估计系数的标准误,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

对线性回归模型系数标准差标准误的理解

1.生成数据

yxe
3.610.63
3.42-1.38
7.631.01
7.44-1.01
11.651.38
11.46-0.63

在这里插入图片描述

2.回归

y = β 0 + β 1 x + ϵ y = \beta_{0}+\beta_{1}x+\epsilon y=β0+β1x+ϵ

y i = β 0 + β 1 x i + e i y_{i}=\beta_{0}+\beta_{1} x_{i}+e_{i} yi=β0+β1xi+ei

reg y xSource |       SS           df       MS      Number of obs   =         6
-------------+----------------------------------   F(1, 4)         =     34.60Model |   57.422285         1   57.422285   Prob > F        =    0.0042Residual |  6.63771505         4  1.65942876   R-squared       =    0.8964
-------------+----------------------------------   Adj R-squared   =    0.8705Total |  64.0600001         5      12.812   Root MSE        =    1.2882------------------------------------------------------------------------------y | Coefficient  Std. err.      t    P>|t|     [95% conf. interval]
-------------+----------------------------------------------------------------x |   1.811429   .3079359     5.88   0.004     .9564615    2.666396_cons |       1.16   1.199238     0.97   0.388    -2.169618    4.489618
------------------------------------------------------------------------------

3.计算回归的标准误差

(1)SSE\SSR\SST

S S E SSE SSE: Sum of Squares Error,
S S E = ∑ i = 1 n ( y i ^ − y i ) 2 = ∑ i = 1 n ( e i − e ˉ ) 2 SSE= \sum_{i=1}^{n}(\hat{y_{i}}-y_{i})^2 = \sum_{i=1}^{n}(e_{i}-\bar{e})^2 SSE=i=1n(yi^yi)2=i=1n(eieˉ)2
在本示例中, S S E = ( 3.6 − 2.97 ) 2 + ( 3.4 − 4.78 ) 2 + ( 7.6 − 6.95 ) 2 + ( 7.4 − 8.41 ) 2 + ( 11.6 − 10.22 ) 2 + ( 11.4 − 12.03 ) 2 = 6.637713 SSE=(3.6-2.97)^2+(3.4-4.78)^2+(7.6-6.95)^2+(7.4-8.41)^2+(11.6-10.22)^2+(11.4-12.03)^2 = 6.637713 SSE=(3.62.97)2+(3.44.78)2+(7.66.95)2+(7.48.41)2+(11.610.22)2+(11.412.03)2=6.637713

S S R SSR SSR: Sum of Squares of the Regression
S S R = ∑ i = 1 n ( y i ^ − y ˉ ) 2 SSR= \sum_{i=1}^{n}(\hat{y_{i}}-\bar{y})^2 SSR=i=1n(yi^yˉ)2
S S T SST SST: Total Sum of Squares
S S T = ∑ i = 1 n ( y i − y ˉ ) 2 SST= \sum_{i=1}^{n}(y_{i}-\bar{y})^2 SST=i=1n(yiyˉ)2

(2)MSE

回归的标准误差为:
s 2 = M S E = S S E n − K = ∑ i = 1 n ( e i − e ˉ ) 2 n − K s^{2}=MSE=\frac{SSE}{n-K}=\frac{\sum_{i=1}^{n}(e_{i}-\bar{e})^2}{n-K} s2=MSE=nKSSE=nKi=1n(eieˉ)2

s = M S E s=\sqrt{MSE} s=MSE

s 2 = 6.637713 6 − 2 = 1.6594282 ; s = 1.288188 s^2 = \frac{6.637713}{6 - 2}=1.6594282; \ \ \ \ \ \ \ s=1.288188 s2=626.637713=1.6594282;       s=1.288188

(3)SE

S β ^ = s 2 ∑ i = 1 n ( x i − x ˉ ) S_{\hat{\beta}} = \sqrt{\frac{s^2}{{\sum_{i=1}^{n}(x_{i}-\bar{x})}}} Sβ^=i=1n(xixˉ)s2

S β ^ = 1 n − 2 ∑ i = 1 n e 2 ^ ∑ i = 1 n ( x i − x ˉ ) S_{\hat{\beta}} = \sqrt{\frac{\frac{1}{n-2}\sum_{i=1}^{n} \hat{e^{2}}}{{\sum_{i=1}^{n}(x_{i}-\bar{x})}}} Sβ^=i=1n(xixˉ)n21i=1ne2^

S β ^ = 1 4 × 6.637713 ( 1 − 3.5 ) 2 + ( 2 − 3.5 ) 2 + ( 3 − 3.5 ) 2 + ( 4 − 3.5 ) 2 + ( 5 − 3.5 ) 2 + ( 6 − 3.5 ) 2 S_{\hat{\beta}} = \sqrt{\frac{\frac{1}{4} \times 6.637713}{(1-3.5)^2+(2-3.5)^2+(3-3.5)^2+(4-3.5)^2+(5-3.5)^2+(6-3.5)^2}} Sβ^=(13.5)2+(23.5)2+(33.5)2+(43.5)2+(53.5)2+(63.5)241×6.637713

SE为何会很大?

  • 样本少,分母可能大
  • 极端值多
  • X分布散(X距X均值离差太大)

Appendix

1. simulation code
clear 
set obs 6
gen y = 3.6 in 1 
replace y = 3.4 in 2 
replace y = 7.6 in 3
replace y = 7.4 in 4
replace y = 11.6 in 5
replace y = 11.4 in 6
gen x = _nreg y x
predict xbgen e = y - xb
format %9.2f xb 
format %9.2f e 
egen addtext_mean = rowmean(y xb)
forv i = 1/6{su add in `i',dglobal y`i' = r(mean)su e in `i',dglobal e`i' = r(mean)
}tw (scatter y x, mlab(y) mlabp(1)) /// (lfit y x) /// (scatter xb x, mlab(xb) mlabp(1)) /// (rspike y xb x) ,legend(off) /// text($y1 0.9 "0.63",size(vsmall) color(red)) /// text($y2 1.9 "-1.38",size(vsmall) color(red)) /// text($y3 2.9 "1.01",size(vsmall) color(red)) /// text($y4 3.9 "-1.01",size(vsmall) color(red)) /// text($y5 4.9 "1.38",size(vsmall) color(red)) /// text($y6 5.9 "-0.63",size(vsmall) color(red)) 
2.序列相关 同方差 or 异方差

对于①参数线性②不存在“严格多重共线性”③随机抽样④严格外生性⑤“球形扰动项”(条件同方差+不存在自相关)五个假定均能够满足时

OLS估计量为BLUE,最优无偏线性估计量

此时,x的协方差矩阵为:
V a r ( β 1 ^ ∣ x ) = V a r ( β 1 + ∑ ( x i − x ˉ ) e i ∑ ( x i − x ˉ ) ∣ x ) Var(\hat{\beta_{1}}|x)=Var({\beta_{1}+\frac{\sum(x_{i}-\bar{x})e_{i}}{\sum(x_{i}-\bar{x})}}|x) Var(β1^x)=Var(β1+(xixˉ)(xixˉ)eix)

V a r ( β 1 ^ ∣ x ) = V a r ( ∑ ( x i − x ˉ ) e i ∣ x ) [ ∑ ( x i − x ˉ ) 2 ] 2 Var(\hat{\beta_{1}}|x)=\frac{Var(\sum(x_{i}-\bar{x})e_{i}|x)}{[\sum(x_{i}-\bar{x})^2]^2} Var(β1^x)=[(xixˉ)2]2Var((xixˉ)eix)

  • 倘若序列无关,那么和的方差即等价于方差的和,假设 V a r ( e i ∣ x ) = σ 2 Var(e_i|x)=\sigma^2 Var(eix)=σ2

KaTeX parse error: Unknown column alignment: * at position 71: … \begin{array}{*̲*lr**} …

  • 序列相关:

σ 2 ^ = ∑ e i 2 n − k − 1 \hat{\sigma^2}=\frac{\sum e_{i}^2}{n-k-1} σ2^=nk1ei2

3.calculate SE in matlab
sqrt(inv(X'*X)*1.6594282)

这篇关于【推导结果】如何得到 回归均方误差 估计系数的标准误的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/857028

相关文章

uva 10014 Simple calculations(数学推导)

直接按照题意来推导最后的结果就行了。 开始的时候只做到了第一个推导,第二次没有继续下去。 代码: #include<stdio.h>int main(){int T, n, i;double a, aa, sum, temp, ans;scanf("%d", &T);while(T--){scanf("%d", &n);scanf("%lf", &first);scanf

数据治理框架-ISO数据治理标准

引言 "数据治理"并不是一个新的概念,国内外有很多组织专注于数据治理理论和实践的研究。目前国际上,主要的数据治理框架有ISO数据治理标准、GDI数据治理框架、DAMA数据治理管理框架等。 ISO数据治理标准 改标准阐述了数据治理的标准、基本原则和数据治理模型,是一套完整的数据治理方法论。 ISO/IEC 38505标准的数据治理方法论的核心内容如下: 数据治理的目标:促进组织高效、合理地

C 标准库 - `<float.h>`

C 标准库 - <float.h> 概述 <float.h> 是 C 标准库中的一个头文件,它定义了与浮点数类型相关的宏。这些宏提供了关于浮点数的属性信息,如精度、最小和最大值、以及舍入误差等。这个头文件对于需要精确控制浮点数行为的程序非常有用,尤其是在数值计算和科学计算领域。 主要宏 <float.h> 中定义了许多宏,下面列举了一些主要的宏: FLT_RADIX:定义了浮点数的基数。

✨机器学习笔记(二)—— 线性回归、代价函数、梯度下降

1️⃣线性回归(linear regression) f w , b ( x ) = w x + b f_{w,b}(x) = wx + b fw,b​(x)=wx+b 🎈A linear regression model predicting house prices: 如图是机器学习通过监督学习运用线性回归模型来预测房价的例子,当房屋大小为1250 f e e t 2 feet^

单位权中误差 详细介绍

单位权中误差(Unit Weight Error, UWE)是用于描述测量数据不确定性的一个统计量,特别是在地理信息系统(GIS)、导航和定位系统中。它主要用于评估和比较不同测量系统或算法的精度。以下是对单位权中误差的详细介绍: 1. 基本概念 单位权中误差(UWE): 定义:单位权中误差表示每个观测值(测量值)在估算中的标准误差。它是误差的一个统计量,主要用于评估测量系统的精度。单位:通常

《C++标准库》读书笔记/第一天(C++新特性(1))

C++11新特性(1) 以auto完成类型自动推导 auto i=42; //以auto声明的变量,其类型会根据其初值被自动推倒出来,因此一定需要一个初始化操作; static auto a=0.19;//可以用额外限定符修饰 vector<string> v;  auto pos=v.begin();//如果类型很长或类型表达式复杂 auto很有用; auto l=[] (int

用Python实现时间序列模型实战——Day 14: 向量自回归模型 (VAR) 与向量误差修正模型 (VECM)

一、学习内容 1. 向量自回归模型 (VAR) 的基本概念与应用 向量自回归模型 (VAR) 是多元时间序列分析中的一种模型,用于捕捉多个变量之间的相互依赖关系。与单变量自回归模型不同,VAR 模型将多个时间序列作为向量输入,同时对这些变量进行回归分析。 VAR 模型的一般形式为: 其中: ​ 是时间  的变量向量。 是常数向量。​ 是每个时间滞后的回归系数矩阵。​ 是误差项向量,假

Matlab/Simulink中PMSM模型的反电动势系数和转矩系数

Matlab/Simulink中PMSM模型的反电动势系数和转矩系数_matlab pmsm-CSDN博客

数据集 3DPW-开源户外三维人体建模-姿态估计-人体关键点-人体mesh建模 >> DataBall

3DPW 3DPW-开源户外三维人体建模数据集-姿态估计-人体关键点-人体mesh建模 开源户外三维人体数据集 @inproceedings{vonMarcard2018, title = {Recovering Accurate 3D Human Pose in The Wild Using IMUs and a Moving Camera}, author = {von Marc

标准IO与系统IO

概念区别 标准IO:(libc提供) fopen fread fwrite 系统IO:(linux系统提供) open read write 操作效率 因为内存与磁盘的执行效率不同 系统IO: 把数据从内存直接写到磁盘上 标准IO: 数据写到缓存,再刷写到磁盘上