tf.nn.softman_cross_entropy_with_logits及几种交叉熵计算

2024-03-05 21:32

本文主要是介绍tf.nn.softman_cross_entropy_with_logits及几种交叉熵计算,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

https://www.jianshu.com/p/95d0dd92a88a 

就看例子就完事了  

tf.nn.softmax

import tensorflow as tf
import numpy as npsess=tf.Session()
#logits代表wx+b的输出,并没有进行softmax(因为softmax后是一个和为1的概率)
logits = np.array([[1, 2, 7],[3, 5, 2],[6, 1, 3],[8, 2, 0],[3, 6, 1]], dtype=np.float32)
#labels是[2,1,0,0,1]的ont-hot编码形式
labels = np.array([[0, 0, 1],[0, 1, 0],[1, 0, 0],[1, 0, 0],[0, 1, 0]], dtype=np.float32)# 公式计算,-np.log(y*softmax_out) 
# y=n*c,softmax_out是n*c,相当于将每个样本softmax的c个特征中最大的取出来,再取负就是求最小
softmax_out=tf.nn.softmax(logits)
cross_entropy1 = -tf.reduce_sum(labels * tf.log(softmax_out), axis=1)   #对应元素相乘,非矩阵乘法
print sess.run(cross_entropy1)#使用一维label计算,对每个样本取第k个元素出来,k代表实际类别
out_v = sess.run(out)
class_v = sess.run(classes)
cross_entropy1_label = -tf.log(out_v[range(len(logits)),class_v])print sess.run(cross_entropy1_label)#---输出
array([ 0.00917445,  0.16984604,  0.05498521,  0.00281022,  0.05498521], dtype=float32)

tf.nn.softmax_cross_entropy_with_logits与tf.nn.sparse_softmax_cross_entropy_with_logits


import tensorflow as tfsess=tf.Session()
#logits代表wx+b的输出,并没有进行softmax(因为softmax后是一个和为1的概率)
logits = np.array([[1, 2, 7],[3, 5, 2],[6, 1, 3],[8, 2, 0],[3, 6, 1]], dtype=np.float32)
#labels是[2,1,0,0,1]的ont-hot编码形式
labels = np.array([[0, 0, 1],[0, 1, 0],[1, 0, 0],[1, 0, 0],[0, 1, 0]], dtype=np.float32)cross_entropy2 = tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=labels)
sess.run(cross_entropy2)classes = tf.argmax(labels, axis=1)    #array([2, 1, 0, 0, 1])
cross_entropy3 = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=classes)
sess.run(cross_entropy2)#---cross_entropy2 输出
array([ 0.00917445,  0.16984604,  0.05498521,  0.00281022,  0.05498521], dtype=float32)A 1-D `Tensor` of length `batch_size` of the same type as `logits` with thesoftmax cross entropy loss.#---cross_entropy3 输出
array([ 0.00917445,  0.16984604,  0.05498521,  0.00281022,  0.05498521], dtype=float32)

1.tf.nn.softmax_cross_entropy_with_logits与tf.nn.sparse_softmax_cross_entropy_with_logits

输出结果相同,,后者的输入label shape=[batch_size],dtype=int32/int64,range=[0, number_classes-1];前者的label shape=[batch_size, number_classes], dtype=[float32/64]

2.tf.losses.softmax_cross_entropy和tf.losses.sparse_softmax_cross_entropy

都是用于计算不同样本的loss,

tf.losses.softmax_cross_entropy默认weight=1,等价于tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits)

weight为标量数字时,等价于w * tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits)

weights为向量时,计算出的每个Loss需乘上对应的样本权重再平均。

3.tf.losses.sparse_softmax_cross_entropy

等价于tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits).

这篇关于tf.nn.softman_cross_entropy_with_logits及几种交叉熵计算的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
http://www.chinasem.cn/article/777870

相关文章

CSS去除a标签的下划线的几种方法

《CSS去除a标签的下划线的几种方法》本文给大家分享在CSS中,去除a标签(超链接)的下划线的几种方法,本文给大家介绍的非常详细,感兴趣的朋友一起看看吧... 在 css 中,去除a标签(超链接)的下划线主要有以下几种方法:使用text-decoration属性通用选择器设置:使用a标签选择器,将tex

Flutter打包APK的几种方式小结

《Flutter打包APK的几种方式小结》Flutter打包不同于RN,Flutter可以在AndroidStudio里编写Flutter代码并最终打包为APK,本篇主要阐述涉及到的几种打包方式,通... 目录前言1. android原生打包APK方式2. Flutter通过原生工程打包方式3. Futte

MySQL INSERT语句实现当记录不存在时插入的几种方法

《MySQLINSERT语句实现当记录不存在时插入的几种方法》MySQL的INSERT语句是用于向数据库表中插入新记录的关键命令,下面:本文主要介绍MySQLINSERT语句实现当记录不存在时... 目录使用 INSERT IGNORE使用 ON DUPLICATE KEY UPDATE使用 REPLACE

Python实现Microsoft Office自动化的几种方式及对比详解

《Python实现MicrosoftOffice自动化的几种方式及对比详解》办公自动化是指利用现代化设备和技术,代替办公人员的部分手动或重复性业务活动,优质而高效地处理办公事务,实现对信息的高效利用... 目录一、基于COM接口的自动化(pywin32)二、独立文件操作库1. Word处理(python-d

python中字符串拼接的几种方法及优缺点对比详解

《python中字符串拼接的几种方法及优缺点对比详解》在Python中,字符串拼接是常见的操作,Python提供了多种方法来拼接字符串,每种方法有其优缺点和适用场景,以下是几种常见的字符串拼接方法,需... 目录1. 使用 + 运算符示例:优缺点:2. 使用&nbsjsp;join() 方法示例:优缺点:3

Linux修改pip和conda缓存路径的几种方法

《Linux修改pip和conda缓存路径的几种方法》在Python生态中,pip和conda是两种常见的软件包管理工具,它们在安装、更新和卸载软件包时都会使用缓存来提高效率,适当地修改它们的缓存路径... 目录一、pip 和 conda 的缓存机制1. pip 的缓存机制默认缓存路径2. conda 的缓

Spring 中使用反射创建 Bean 实例的几种方式

《Spring中使用反射创建Bean实例的几种方式》文章介绍了在Spring框架中如何使用反射来创建Bean实例,包括使用Class.newInstance()、Constructor.newI... 目录1. 使用 Class.newInstance() (仅限无参构造函数):2. 使用 Construc

SpringBoot项目启动错误:找不到或无法加载主类的几种解决方法

《SpringBoot项目启动错误:找不到或无法加载主类的几种解决方法》本文主要介绍了SpringBoot项目启动错误:找不到或无法加载主类的几种解决方法,具有一定的参考价值,感兴趣的可以了解一下... 目录方法1:更改IDE配置方法2:在Eclipse中清理项目方法3:使用Maven命令行在开发Sprin

Python依赖库的几种离线安装方法总结

《Python依赖库的几种离线安装方法总结》:本文主要介绍如何在Python中使用pip工具进行依赖库的安装和管理,包括如何导出和导入依赖包列表、如何下载和安装单个或多个库包及其依赖,以及如何指定... 目录前言一、如何copy一个python环境二、如何下载一个包及其依赖并安装三、如何导出requirem

C++初始化数组的几种常见方法(简单易懂)

《C++初始化数组的几种常见方法(简单易懂)》本文介绍了C++中数组的初始化方法,包括一维数组和二维数组的初始化,以及用new动态初始化数组,在C++11及以上版本中,还提供了使用std::array... 目录1、初始化一维数组1.1、使用列表初始化(推荐方式)1.2、初始化部分列表1.3、使用std::