代码随想录第四十五天 | 动态规划 完全背包的应用:爬楼梯改编;求最小个数,循环顺序无影响(322 零钱兑换,279 完全平方数)

本文主要是介绍代码随想录第四十五天 | 动态规划 完全背包的应用:爬楼梯改编;求最小个数,循环顺序无影响(322 零钱兑换,279 完全平方数),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1、爬楼梯改编

之前讲这道题目的时候,因为还没有讲背包问题,所以就只是讲了一下爬楼梯最直接的动规方法(斐波那契)
改为:一步一个台阶,两个台阶,三个台阶,…,直到 m个台阶。问有多少种不同的方法可以爬到楼顶

1阶,2阶,… m阶就是物品楼顶就是背包
每一阶可以重复使用,例如跳了1阶,还可以继续跳1阶,问跳到楼顶有几种方法其实就是问装满背包有几种方法。此时大家应该发现这就是一个完全背包问题
和昨天的题目动态规划:leetcode 377:组合总和 Ⅳ 基本就是一道题了

动规五部曲分析如下:
1、确定dp数组以及下标的含义
dp[i]爬到i个台阶楼顶,有dp[i]种方法

2、确定递推公式
在 leetcode 494:目标和 、 leetcode 518:零钱兑换II 、leetcode 377:组合总和 Ⅳ 中讲过了,求装满背包有几种方法,递推公式一般都是dp[i] += dp[i - nums[j]];
本题,dp[i]有几种来源dp[i - 1],dp[i - 2],dp[i - 3] 等等,即:dp[i - j],那么递推公式为:dp[i] += dp[i - j]

3、dp数组如何初始化
既然递归公式dp[i] += dp[i - j],那么dp[0] 一定为1dp[0]递归中一切数值基础所在,如果dp[0]是0的话,其他数值都是0
下标非0dp[i] 初始化为0,因为dp[i]靠dp[i-j]累计上来的,dp[i]本身为0这样才不会影响结果

4、确定遍历顺序
这是背包里求排列问题,即:1、2 步 和 2、1 步都是上三个台阶,但是这两种方法不一样,所以需将target放在外循环,将nums放在内循环
每一步可以走多次,这是完全背包内循环需要从前向后遍历

5、举例来推导dp数组
和 leetcode 377:组合总和 Ⅳ 几乎是一样的

代码随想录C++代码如下:

class Solution {
public:int climbStairs(int n) {vector<int> dp(n + 1, 0);dp[0] = 1;for (int i = 1; i <= n; i++) { // 遍历背包for (int j = 1; j <= m; j++) { // 遍历物品if (i - j >= 0) dp[i] += dp[i - j];}}return dp[n];}
};

注意 i, j 都是从1 开始

时间复杂度: O(nm)
空间复杂度: O(n)

2、求最小个数,循环顺序无影响

2.1 leetcode 322:零钱兑换

第一遍代码,也不知道应该用 排列 还是 组合
因为递归公式里面,求更小值初值取INT_MAX,就要避免在INT_MAX上再加数

class Solution {
public:int coinChange(vector<int>& coins, int amount) {vector<int> dp(amount + 1, INT_MAX);//每种金额的最少硬币个数//求排列数,感觉组合数也行dp[0] = 0;//凑成他自己面额的最少要一个硬币for(int i = 0; i <= amount; i++) {for(int j = 0; j < coins.size(); j++) {if(i >= coins[j] && dp[i - coins[j]] != INT_MAX) {//避免在INT_MAX上加一dp[i] = min(dp[i], dp[i - coins[j]] + 1);}}}if(dp[amount] == INT_MAX) {return -1;}return dp[amount];}
};

代码随想录思路
题目中说每种硬币的数量无限的,可以看出是典型的完全背包问题

动规五部曲分析如下:
1、确定dp数组以及下标的含义
dp[j]凑足总额为j所需钱币最少个数为dp[j]

2、确定递推公式
凑足总额为j - coins[i]最少个数dp[j - coins[i]],那么只需要加上一个钱币coins[i]dp[j - coins[i]] + 1就是dp[j](考虑coins[i]),所以dp[j] 要取所有 dp[j - coins[i]] + 1 中最小
递推公式:dp[j] = min(dp[j - coins[i]] + 1, dp[j]);

3、dp数组如何初始化
首先凑足总金额为0所需钱币的个数一定是0,那么dp[0] = 0;

其他下标对应的数值呢?
考虑到递推公式的特性,dp[j]必须初始化为一个最大的数,否则就会在min(dp[j - coins[i]] + 1, dp[j])比较的过程中被初始值覆盖,所以下标非0的元素都是应该是最大值

代码如下:

vector<int> dp(amount + 1, INT_MAX);
dp[0] = 0;

4、确定遍历顺序
本题求钱币最小个数,那么钱币有顺序和没有顺序都可以,都不影响钱币的最小个数,所以本题并不强调集合是组合还是排列

如果求组合数就是外层for循环遍历物品,内层for遍历背包
如果求排列数就是外层for遍历背包,内层for循环遍历物品

所以本题的两个for循环的关系是:外层for循环遍历物品内层for遍历背包 或者 外层for遍历背包,内层for循环遍历物品都是可以的,本题钱币数量可以无限使用,那么是完全背包。所以遍历的内循环是正序

5、举例推导dp数组
以输入:coins = [1, 2, 5], amount = 5为例
举例推导dp数组
代码随想录C++ 代码如下:
采用coins放在外循环,target在内循环的方式
遍历顺序为:coins(物品)放在外循环,target(背包)在内循环。且内循环正序

// 版本一
class Solution {
public:int coinChange(vector<int>& coins, int amount) {vector<int> dp(amount + 1, INT_MAX);dp[0] = 0;for (int i = 0; i < coins.size(); i++) { // 遍历物品for (int j = coins[i]; j <= amount; j++) { // 遍历背包if (dp[j - coins[i]] != INT_MAX) { // 如果dp[j - coins[i]]是初始值则跳过dp[j] = min(dp[j - coins[i]] + 1, dp[j]);}}}if (dp[amount] == INT_MAX) return -1;return dp[amount];}
};

时间复杂度: O(n * amount),其中 n 为 coins 的长度
空间复杂度: O(amount)

对于遍历方式为遍历背包放在外循环,遍历物品放在内循环也是可以的,见第一遍代码

2.2 leetcode 279:完全平方数

第一遍代码:
记录和为 n完全平方数最少数量求排列还是组合无所谓
dp[0] = 0;自己就是完全平方数的 肯定dp是1dp[i - j * j] == 0 时,dp[0] + 1

对于内层循环里的 <= n / 2
这里考虑到其实每个数的分解的加数 最大整数自乘的 那个整数 最大就是n / 2
但是因为n / 2是向下取整,所以当数为1的时候,<= 1/2直接把1也排除了,所以应该是n / 2 + 1

像代码随想录那样让 i * i <= n就不用整那么复杂了

class Solution {
public:int numSquares(int n) {vector<int> dp(n + 1, INT_MAX);//记录和为 n 的完全平方数的最少数量,求排列还是组合无所谓dp[0] = 0;//自己就是完全平方数的 肯定dp是1for(int i = 0; i <= n; i++) {for(int j = 1; j <= n / 2 + 1; j++) {/*这里考虑到其实每个数的分解的加数 最大整数自乘的 那个整数 最大就是n / 2但是因为n / 2是向下取整,所以当数为1的时候,<= 1/2直接把1也排除了,所以应该是n / 2 + 1*/if(i - j * j >= 0) {dp[i] = min(dp[i], dp[i - j * j] + 1);}}}return dp[n];}
};

代码随想录思路
完全平方数就是物品(可以无限件使用),凑个正整数n就是背包,问凑满这个背包最少有多少物品
就是个完全背包

动规五部曲分析如下:
1、确定dp数组(dp table)以及下标的含义
dp[j]和为j的完全平方数最少数量为dp[j]

2、确定递推公式
dp[j] 可以由dp[j - i * i]推出, dp[j - i * i] + 1 便可以凑成dp[j]
此时我们要选择最小的dp[j],所以递推公式dp[j] = min(dp[j - i * i] + 1, dp[j]);

3、dp数组如何初始化
dp[0]表示 和为0的完全平方数的最小数量,那么dp[0]一定是0
看题目描述,找到若干个完全平方数(比如 1, 4, 9, 16, …),题目描述中可没说要从0开始,dp[0]=0完全是为了递推公式

非0下标的dp[j] 应该是多少呢?
从递归公式dp[j] = min(dp[j - i * i] + 1, dp[j]);中可以看出每次dp[j]都要选最小的,所以非0下标的dp[j]一定要初始为最大值,这样dp[j]在递推的时候不会被初始值覆盖

4、确定遍历顺序
这是完全背包,如果求组合数就是外层for循环遍历物品,内层for遍历背包
如果求排列数就是外层for遍历背包,内层for循环遍历物品

在leetcode 322:零钱兑换 中就探讨了这个问题,本题也是一样的,是求最小数
所以本题外层for遍历背包,内层for遍历物品,还是外层for遍历物品,内层for遍历背包,都是可以的

5、举例推导dp数组
已输入n为5例,dp状态图如下:
举例推导dp数组
第一遍代码外层遍历背包,内层遍历物品;给出代码随想录给出的先遍历物品,再遍历背包的代码:

class Solution {
public:int numSquares(int n) {vector<int> dp(n + 1, INT_MAX);dp[0] = 0;for (int i = 1; i * i <= n; i++) { // 遍历物品for (int j = i * i; j <= n; j++) { // 遍历背包dp[j] = min(dp[j - i * i] + 1, dp[j]);}}return dp[n];}
};

这篇关于代码随想录第四十五天 | 动态规划 完全背包的应用:爬楼梯改编;求最小个数,循环顺序无影响(322 零钱兑换,279 完全平方数)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/365613

相关文章

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

用js控制视频播放进度基本示例代码

《用js控制视频播放进度基本示例代码》写前端的时候,很多的时候是需要支持要网页视频播放的功能,下面这篇文章主要给大家介绍了关于用js控制视频播放进度的相关资料,文中通过代码介绍的非常详细,需要的朋友可... 目录前言html部分:JavaScript部分:注意:总结前言在javascript中控制视频播放

C#如何动态创建Label,及动态label事件

《C#如何动态创建Label,及动态label事件》:本文主要介绍C#如何动态创建Label,及动态label事件,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#如何动态创建Label,及动态label事件第一点:switch中的生成我们的label事件接着,

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

Spring Boot 配置文件之类型、加载顺序与最佳实践记录

《SpringBoot配置文件之类型、加载顺序与最佳实践记录》SpringBoot的配置文件是灵活且强大的工具,通过合理的配置管理,可以让应用开发和部署更加高效,无论是简单的属性配置,还是复杂... 目录Spring Boot 配置文件详解一、Spring Boot 配置文件类型1.1 applicatio

Spring Boot 3.4.3 基于 Spring WebFlux 实现 SSE 功能(代码示例)

《SpringBoot3.4.3基于SpringWebFlux实现SSE功能(代码示例)》SpringBoot3.4.3结合SpringWebFlux实现SSE功能,为实时数据推送提供... 目录1. SSE 简介1.1 什么是 SSE?1.2 SSE 的优点1.3 适用场景2. Spring WebFlu

java之Objects.nonNull用法代码解读

《java之Objects.nonNull用法代码解读》:本文主要介绍java之Objects.nonNull用法代码,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录Java之Objects.nonwww.chinasem.cnNull用法代码Objects.nonN