代码随想录算法训练营第四十三天 | 完全背包理论基础、518.零钱兑换II、377. 组合总和 Ⅳ、70. 爬楼梯 (进阶)

本文主要是介绍代码随想录算法训练营第四十三天 | 完全背包理论基础、518.零钱兑换II、377. 组合总和 Ⅳ、70. 爬楼梯 (进阶),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

完全背包理论基础

题目链接:https://kamacoder.com/problempage.php?pid=1052
文档讲解:https://programmercarl.com/%E8%83%8C%E5%8C%85%E9%97%AE%E9%A2%98%E7%90%86%E8%AE%BA%E5%9F…
视频讲解:https://www.bilibili.com/video/BV1uK411o7c9/

思路

完全背包中,每个物品可以使用无限次。遍历顺序为顺序遍历物品和顺序遍历背包,并且两个for循环可以交换顺序。

for (int i = 0; i < weight.length; i++) {for (int j = weight[i]; j <= bagWeight; j++){dp[j] = Math.max(dp[j], dp[j - weight[i]] + value[i]);}
}

代码

import java.util.*;public class Main{public static void main(String[] args) {Scanner in = new Scanner(System.in);int n = in.nextInt();int bagWeight = in.nextInt();int[] weight = new int[n];int[] value = new int[n];for (int i = 0; i < n; i++) {weight[i] = in.nextInt();value[i] = in.nextInt();}int[] dp = new int[bagWeight + 1];for (int i = 0; i < n; i++) {for (int j = weight[i]; j <= bagWeight; j++) {dp[j] = Math.max(dp[j], dp[j - weight[i]] + value[i]);}}System.out.println(dp[bagWeight]);}
}

518.零钱兑换II

题目链接:https://leetcode.cn/problems/coin-change-ii/
文档讲解:https://programmercarl.com/0518.%E9%9B%B6%E9%92%B1%E5%85%91%E6%8D…
视频讲解:https://www.bilibili.com/video/BV1KM411k75j/

思路

  • 确定dp数组以及下标的含义:凑成j块钱有dp[j]种方法。
  • 确定递推公式:计算方法数要用累加,公式为dp[j] += dp[j - coins[i]];
  • dp数组如何初始化:dp[0] = 1;,否则累加出来都是0。
  • 确定遍历顺序:完全背包问题中,物品和背包都是正序遍历。本题要求的是组合数,需要先遍历物品,再遍历背包;如果是求排列数,就需要先遍历背包,再遍历物品。
  • 打印dp数组,用于debug

代码

class Solution {public int change(int amount, int[] coins) {int[] dp = new int[amount + 1];dp[0] = 1;for (int i = 0; i < coins.length; i++) {for (int j = coins[i]; j <= amount; j++) {dp[j] += dp[j - coins[i]];}}return dp[amount];}
}

分析:时间复杂度:O(mn),空间复杂度:O(m)。其中 m 是 amount,n 是 coins 的长度。

377. 组合总和 Ⅳ

题目链接:https://leetcode.cn/problems/combination-sum-iv/
文档讲解:https://programmercarl.com/0377.%E7%BB%84%E5%90%88%E6%80%BB%E5%92%8C%E2%85%A3.html
视频讲解:https://www.bilibili.com/video/BV1V14y1n7B6/

思路

  • 确定dp数组以及下标的含义:能够凑成目标整数j的组合数为dp[j]
  • 确定递推公式:计算方法数要用累加,公式为dp[j] += dp[j - nums[i]];
  • dp数组如何初始化:dp[0] = 1;,否则累加出来都是0。
  • 确定遍历顺序:完全背包问题中,物品和背包都是正序遍历。本题要求的是排列数,需要先遍历背包,再遍历物品;如果是求组合数,就需要先遍历物品,再遍历背包。
  • 打印dp数组,用于debug

代码

class Solution {public int combinationSum4(int[] nums, int target) {int[] dp = new int[target + 1];dp[0] = 1;for (int j = 0; j <= target; j++) {for (int i = 0; i < nums.length; i++) {if (j >= nums[i]) dp[j] += dp[j - nums[i]];}}return dp[target];}
}

分析:时间复杂度:O(mn),空间复杂度:O(m)。其中m是target,n是nums的长度。

70. 爬楼梯 (进阶)

题目链接:https://kamacoder.com/problempage.php?pid=1067
文档讲解:https://programmercarl.com/0070.%E7%88%AC%E6%A5%BC%E6%A2%AF%E5%AE%8C%E5%85%A8%E8%83%8C%E5…

思路

  • 确定dp数组以及下标的含义:爬j阶台阶的方法有dp[j]种。
  • 确定递推公式:计算方法数要用累加,公式为dp[j] += dp[j - i];
  • dp数组如何初始化:dp[0] = 1;,否则累加出来都是0。
  • 确定遍历顺序:完全背包问题中,物品和背包都是正序遍历。本题要求的是排列数,需要先遍历背包,再遍历物品;如果是求组合数,就需要先遍历物品,再遍历背包。
  • 打印dp数组,用于debug

代码

import java.util.*;public class Main{public static void main(String[] args) {Scanner in = new Scanner(System.in);int n = in.nextInt();int m = in.nextInt();int[] dp = new int[n + 1];dp[0] = 1;for (int j = 0; j <= n; j++) {for (int i = 1; i <= m; i++) {if (j >= i) dp[j] += dp[j - i];   }}System.out.println(dp[n]);}
}

分析:时间复杂度:O(mn),空间复杂度:O(n)。

这篇关于代码随想录算法训练营第四十三天 | 完全背包理论基础、518.零钱兑换II、377. 组合总和 Ⅳ、70. 爬楼梯 (进阶)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1076900

相关文章

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

用js控制视频播放进度基本示例代码

《用js控制视频播放进度基本示例代码》写前端的时候,很多的时候是需要支持要网页视频播放的功能,下面这篇文章主要给大家介绍了关于用js控制视频播放进度的相关资料,文中通过代码介绍的非常详细,需要的朋友可... 目录前言html部分:JavaScript部分:注意:总结前言在javascript中控制视频播放

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

Spring Boot 3.4.3 基于 Spring WebFlux 实现 SSE 功能(代码示例)

《SpringBoot3.4.3基于SpringWebFlux实现SSE功能(代码示例)》SpringBoot3.4.3结合SpringWebFlux实现SSE功能,为实时数据推送提供... 目录1. SSE 简介1.1 什么是 SSE?1.2 SSE 的优点1.3 适用场景2. Spring WebFlu

java之Objects.nonNull用法代码解读

《java之Objects.nonNull用法代码解读》:本文主要介绍java之Objects.nonNull用法代码,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录Java之Objects.nonwww.chinasem.cnNull用法代码Objects.nonN

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

C#基础之委托详解(Delegate)

《C#基础之委托详解(Delegate)》:本文主要介绍C#基础之委托(Delegate),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 委托定义2. 委托实例化3. 多播委托(Multicast Delegates)4. 委托的用途事件处理回调函数LINQ