YOLOv9全网最新改进系列::YOLOv9完美融合双卷积核(DualConv)来构建轻量级深度神经网络,目标检测模型有效涨点神器!!!

本文主要是介绍YOLOv9全网最新改进系列::YOLOv9完美融合双卷积核(DualConv)来构建轻量级深度神经网络,目标检测模型有效涨点神器!!!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

YOLOv9全网最新改进系列::YOLOv9完美融合双卷积核(DualConv)来构建轻量级深度神经网络,目标检测模型有效涨点神器!!!

YOLOv9原文链接戳这里,原文全文翻译请关注B站Ai学术叫叫首er

B站全文戳这里!

详细的改进教程以及源码,戳这!戳这!!戳这!!!B站:AI学术叫叫兽 源码在相簿的链接中,动态中也有链接,感谢支持!祝科研遥遥领先!

YOLOv9全网最新改进系列::YOLOv9完美融合双卷积核(DualConv)来构建轻量级深度神经网络,目标检测模型有效涨点神器!!!

  • YOLOv9全网最新改进系列::YOLOv9完美融合双卷积核(DualConv)来构建轻量级深度神经网络,目标检测模型有效涨点神器!!!
  • 摘要
  • 2 修改步骤!
    • 2.1 修改YAML文件
    • 2.2 新建.py
    • 2.3 修改tasks.py
  • 三、验证是否成功即可


DualConv: Dual Convolutional Kernels for
Lightweight Deep Neural Networks(提出原文戳这)

详细的改进教程以及源码,戳这!戳这!!戳这!!!B站:AI学术叫叫兽 源码在相簿的链接中,动态中也有链接,感谢支持!祝科研遥遥领先!
截止到发稿时,B站YOLOv9最新改进系列的源码包,已更新了16种的改进!自己排列组合2-4种后,考虑位置不同后可排列组合上千种!!专注AI学术,关注B站博主:Ai学术叫叫兽er!

摘要

CNN 架构通常对内存和计算要求很高,这使得它们对于硬件资源有限的嵌入式系统不可行。 我们提出双卷积核(DualConv)来构建轻量级深度神经网络。 DualConv 结合了 3×3 和 1×1 卷积核来同时处理相同的输入特征图通道,并利用组卷积技术来有效地排列卷积滤波器。 DualConv 可用于任何 CNN 模型,例如用于图像分类的 VGG-16 和 ResNet-50、用于对象检测的 YOLO 和 R-CNN 或用于语义分割的 FCN。 在本文中,我们广泛测试了 DualConv 的分类功能,因为这些网络架构构成了许多其他任务的骨干。 我们还在 YOLO-V3 上测试了 DualConv 的图像检测功能。 实验结果表明,结合我们的结构创新,DualConv 显着降低了深度神经网络的计算成本和参数数量,同时在某些情况下令人惊讶地实现了比原始模型略高的精度。 我们使用 DualConv 将轻量级 MobileNetV2 的参数数量进一步减少了 54%,而在 CIFAR-100 数据集上的准确率仅下降了 0.68%。 当参数数量不是问题时,DualConv 在相同数据集上将 MobileNetV1 的准确率提高了 4.11%。 此外,DualConv 显着提高了 YOLO-V3 目标检测速度,并将其在 PASCAL VOC 数据集上的准确率提高了 4.4%。

Convolutional filter designs of (a) standard convolution, (b) depthwise separable convolution, (c) group convolution, (d) heterogeneous convolution, and (e) the proposed dual convolution. M is the number of input channels (i.e., the depth of input feature map), N is the number of convolutional filters and also the number of output channels (i.e., the depth of output feature map), Di is the width and height dimension of input feature map, K × K is the convolutional kernel size, G is the number of groups in group convolution and dual convolution, and 1/P is the ratio of 3×3 convolutional kernels in heterogeneous convolution. Note that the heterogeneous filters are arranged in a shifted manner [18].(a) 标准卷积、(b) 深度可分离卷积、© 组卷积、(d) 异构卷积和 (e) 所提出的双卷积的卷积滤波器设计。 M是输入通道数(即输入特征图的深度),N是卷积滤波器的数量,也是输出通道的数量(即输出特征图的深度),Di是宽度和高度维度 输入特征图的,K×K是卷积核大小,G是组卷积和对偶卷积中的组数,1/P是异构卷积中3×3卷积核的比例。 请注意,异构滤波器以移位的方式排列[18]。

我们提出了 DualConv,它将 3×3 组卷积与 1×1 逐点卷积相结合,解决了跨通道通信和原始输入特征图中信息保存的问题。 与 HetConv 相比,DualConv 通过添加最少的参数来提高网络性能。 DualConv应用于常见的网络结构来执行图像分类和目标检测。 通过比较标准卷积和 DualConv 的实验结果,证明了所提出的 DualConv 的有效性和效率。 从实验结果可以看出,DualConv 可以集成在标准网络架构和轻量级网络架构中,以提高网络精度并减少网络参数、计算成本和推理时间。 我们还证明了 DualConv 可以很好地适应各种图像数据集,并具有很强的泛化能力。 未来的研究工作将集中在嵌入式设备上的部署,以进一步证明 DualConv 在实际应用中的效率。

跑出结果后-相关方法详情请结合B站视频阅读全文,融入自己文章中!!!

2 修改步骤!

2.1 修改YAML文件

详细的改进教程以及源码,戳这!戳这!!戳这!!!B站:AI学术叫叫兽 源码在相簿的链接中,动态中也有链接,感谢支持!祝科研遥遥领先!

2.2 新建.py

详细的改进教程以及源码,戳这!戳这!!戳这!!!B站:AI学术叫叫兽er 源码在相簿的链接中,动态中也有链接,感谢支持!祝科研遥遥领先!

2.3 修改tasks.py

详细的改进教程以及源码,戳这!戳这!!戳这!!!B站:AI学术叫叫兽er 源码在相簿的链接中,动态中也有链接,感谢支持!祝科研遥遥领先!

三、验证是否成功即可

执行命令

python train.py

改完收工!
关注B站:Ai学术叫叫兽er
从此走上科研快速路
遥遥领先同行!!!!

详细的改进教程以及源码,戳这!戳这!!戳这!!!B站:AI学术叫叫兽er 源码在相簿的链接中,动态中也有链接,感谢支持!祝科研遥遥领先!

这篇关于YOLOv9全网最新改进系列::YOLOv9完美融合双卷积核(DualConv)来构建轻量级深度神经网络,目标检测模型有效涨点神器!!!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/989271

相关文章

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

一文详解如何从零构建Spring Boot Starter并实现整合

《一文详解如何从零构建SpringBootStarter并实现整合》SpringBoot是一个开源的Java基础框架,用于创建独立、生产级的基于Spring框架的应用程序,:本文主要介绍如何从... 目录一、Spring Boot Starter的核心价值二、Starter项目创建全流程2.1 项目初始化(

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

使用Java实现通用树形结构构建工具类

《使用Java实现通用树形结构构建工具类》这篇文章主要为大家详细介绍了如何使用Java实现通用树形结构构建工具类,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录完整代码一、设计思想与核心功能二、核心实现原理1. 数据结构准备阶段2. 循环依赖检测算法3. 树形结构构建4. 搜索子

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

电脑提示找不到openal32.dll文件怎么办? openal32.dll丢失完美修复方法

《电脑提示找不到openal32.dll文件怎么办?openal32.dll丢失完美修复方法》openal32.dll是一种重要的系统文件,当它丢失时,会给我们的电脑带来很大的困扰,很多人都曾经遇到... 在使用电脑过程中,我们常常会遇到一些.dll文件丢失的问题,而openal32.dll的丢失是其中比较

使用Python和python-pptx构建Markdown到PowerPoint转换器

《使用Python和python-pptx构建Markdown到PowerPoint转换器》在这篇博客中,我们将深入分析一个使用Python开发的应用程序,该程序可以将Markdown文件转换为Pow... 目录引言应用概述代码结构与分析1. 类定义与初始化2. 事件处理3. Markdown 处理4. 转

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

使用DrissionPage控制360浏览器的完美解决方案

《使用DrissionPage控制360浏览器的完美解决方案》在网页自动化领域,经常遇到需要保持登录状态、保留Cookie等场景,今天要分享的方案可以完美解决这个问题:使用DrissionPage直接... 目录完整代码引言为什么要使用已有用户数据?核心代码实现1. 导入必要模块2. 关键配置(重点!)3.