代码随想录算法训练营Day38 | 动态规划理论基础、509. 斐波那契数、70. 爬楼梯、746. 使用最小花费爬楼梯 | Python | 个人记录向

本文主要是介绍代码随想录算法训练营Day38 | 动态规划理论基础、509. 斐波那契数、70. 爬楼梯、746. 使用最小花费爬楼梯 | Python | 个人记录向,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

注:Day37休息。

本文目录

  • 动态规划理论基础
  • 509. 斐波那契数
    • 做题
    • 看文章
  • 70. 爬楼梯
    • 做题
    • 看文章
      • 空间复杂度为O(n)版本
      • 空间复杂度为O(3)版本
  • 746. 使用最小花费爬楼梯
    • 做题
    • 看文章
  • 以往忽略的知识点小结
  • 个人体会

动态规划理论基础

代码随想录:动态规划理论基础

动规五部曲:

  1. 确定dp数组(dp table)以及下标的含义
  2. 确定递推公式
  3. dp数组如何初始化
  4. 确定遍历顺序
  5. 举例推导dp数组

509. 斐波那契数

代码随想录:509. 斐波那契数
Leetcode:509. 斐波那契数

做题

class Solution:def fib(self, n: int) -> int:if n == 0 or n == 1:return nf = [0] * (n+1)f[0] = 0f[1] = 1i = 2while i <= n:f[i] = f[i-1] + f[i-2]i += 1return f[n]  

时间复杂度: O(n)
空间复杂度: O(n)

看文章

可以只维护两个数值。
时间复杂度: O(n)
空间复杂度: O(1)

70. 爬楼梯

代码随想录:70. 爬楼梯
Leetcode:70. 爬楼梯

做题

往上一格和两格加上当前的方法数,初始值为1。但感觉有点懵懵的。

class Solution:def climbStairs(self, n: int) -> int:f = [0] * (n+1)f[0] = 1for i in range(n):if i + 1 <= n:f[i+1] = f[i+1] + f[i]if i + 2 <= n:f[i+2] = f[i+2] + f[i]return f[n]    

时间复杂度:O(n)
空间复杂度:O(n)

看文章

其实类似斐波那契数。

空间复杂度为O(n)版本

class Solution:def climbStairs(self, n: int) -> int:if n <= 1:return ndp = [0] * (n + 1)dp[1] = 1dp[2] = 2for i in range(3, n + 1):dp[i] = dp[i - 1] + dp[i - 2]return dp[n]

空间复杂度为O(3)版本

# 空间复杂度为O(3)版本
class Solution:def climbStairs(self, n: int) -> int:if n <= 1:return ndp = [0] * 3dp[1] = 1dp[2] = 2for i in range(3, n + 1):total = dp[1] + dp[2]dp[1] = dp[2]dp[2] = totalreturn dp[2]

把dp[1]和dp[2]改为常变量,就变成O(1)了。

746. 使用最小花费爬楼梯

代码随想录:746. 使用最小花费爬楼梯
Leetcode:746. 使用最小花费爬楼梯

做题

直接在cost数组上做计算即可。

class Solution:def minCostClimbingStairs(self, cost: List[int]) -> int:size = len(cost)for i in range(2, len(cost)):cost[i] = min(cost[i-1], cost[i-2]) + cost[i]return min(cost[size-1], cost[size-2])

时间复杂度:O(n)
空间复杂度:O(1),使用原始数组不算空间复杂度

看文章

思路差不多。

以往忽略的知识点小结

  • 动规如果只需要保存前几个数,可以用几个常变量保存,降低空间复杂度
  • 可以举例推导dp数组,然后打印日志来debug

个人体会

完成时间:1h20min。
心得:动规刚开始,需要理清思路,今天都AC了。

这篇关于代码随想录算法训练营Day38 | 动态规划理论基础、509. 斐波那契数、70. 爬楼梯、746. 使用最小花费爬楼梯 | Python | 个人记录向的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/987881

相关文章

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

使用Python实现可恢复式多线程下载器

《使用Python实现可恢复式多线程下载器》在数字时代,大文件下载已成为日常操作,本文将手把手教你用Python打造专业级下载器,实现断点续传,多线程加速,速度限制等功能,感兴趣的小伙伴可以了解下... 目录一、智能续传:从崩溃边缘抢救进度二、多线程加速:榨干网络带宽三、速度控制:做网络的好邻居四、终端交互

Python中注释使用方法举例详解

《Python中注释使用方法举例详解》在Python编程语言中注释是必不可少的一部分,它有助于提高代码的可读性和维护性,:本文主要介绍Python中注释使用方法的相关资料,需要的朋友可以参考下... 目录一、前言二、什么是注释?示例:三、单行注释语法:以 China编程# 开头,后面的内容为注释内容示例:示例:四

Python中win32包的安装及常见用途介绍

《Python中win32包的安装及常见用途介绍》在Windows环境下,PythonWin32模块通常随Python安装包一起安装,:本文主要介绍Python中win32包的安装及常见用途的相关... 目录前言主要组件安装方法常见用途1. 操作Windows注册表2. 操作Windows服务3. 窗口操作

Python中re模块结合正则表达式的实际应用案例

《Python中re模块结合正则表达式的实际应用案例》Python中的re模块是用于处理正则表达式的强大工具,正则表达式是一种用来匹配字符串的模式,它可以在文本中搜索和匹配特定的字符串模式,这篇文章主... 目录前言re模块常用函数一、查看文本中是否包含 A 或 B 字符串二、替换多个关键词为统一格式三、提

Java中调用数据库存储过程的示例代码

《Java中调用数据库存储过程的示例代码》本文介绍Java通过JDBC调用数据库存储过程的方法,涵盖参数类型、执行步骤及数据库差异,需注意异常处理与资源管理,以优化性能并实现复杂业务逻辑,感兴趣的朋友... 目录一、存储过程概述二、Java调用存储过程的基本javascript步骤三、Java调用存储过程示

Visual Studio 2022 编译C++20代码的图文步骤

《VisualStudio2022编译C++20代码的图文步骤》在VisualStudio中启用C++20import功能,需设置语言标准为ISOC++20,开启扫描源查找模块依赖及实验性标... 默认创建Visual Studio桌面控制台项目代码包含C++20的import方法。右键项目的属性:

python常用的正则表达式及作用

《python常用的正则表达式及作用》正则表达式是处理字符串的强大工具,Python通过re模块提供正则表达式支持,本文给大家介绍python常用的正则表达式及作用详解,感兴趣的朋友跟随小编一起看看吧... 目录python常用正则表达式及作用基本匹配模式常用正则表达式示例常用量词边界匹配分组和捕获常用re

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文

python删除xml中的w:ascii属性的步骤

《python删除xml中的w:ascii属性的步骤》使用xml.etree.ElementTree删除WordXML中w:ascii属性,需注册命名空间并定位rFonts元素,通过del操作删除属... 可以使用python的XML.etree.ElementTree模块通过以下步骤删除XML中的w:as