本文主要是介绍代码随想录算法训练营三刷 day45 | 动态规划 之 70. 爬楼梯 (进阶) 322. 零钱兑换 279.完全平方数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
三刷day45
- 70. 爬楼梯 (进阶)
- 1. 确定dp数组以及下标的含义
- 2.确定递推公式
- 3.dp数组如何初始化
- 4.确定遍历顺序
- 5.举例来推导dp数组
- 322. 零钱兑换
- 1. 确定dp数组以及下标的含义
- 2.确定递推公式
- 3.dp数组如何初始化
- 4.确定遍历顺序
- 5.举例推导dp数组
- 279.完全平方数
- 1. 确定dp数组(dp table)以及下标的含义
- 2.确定递推公式
- 3.dp数组如何初始化
- 4.确定遍历顺序
- 5.举例推导dp数组
70. 爬楼梯 (进阶)
题目链接
解题思路:
动规五部曲分析如下:
1. 确定dp数组以及下标的含义
dp[i]
:爬到有i个台阶的楼顶,有dp[i]
种方法。
2.确定递推公式
求装满背包有几种方法,递推公式一般都是dp[i] += dp[i - nums[j]]
;
本题呢,dp[i]有几种来源,dp[i - 1]
,dp[i - 2]
,dp[i - 3]
等等,即:dp[i - j]
那么递推公式为:dp[i] += dp[i - j]
3.dp数组如何初始化
既然递归公式是 dp[i] += dp[i - j]
,那么dp[0]
一定为1,dp[0]
是递归中一切数值的基础所在,如果dp[0]
是0的话,其他数值都是0了。
下标非0的dp[i]
初始化为0,因为dp[i]
是靠dp[i-j]
累计上来的,dp[i]
本身为0这样才不会影响结果
4.确定遍历顺序
这是背包里求排列问题,即:1、2 步 和 2、1 步都是上三个台阶,但是这两种方法不一样!
所以需将target放在外循环,将nums放在内循环。
每一步可以走多次,这是完全背包,内循环需要从前向后遍历。
5.举例来推导dp数组
介于本题和动态规划:377. 组合总和 Ⅳ 几乎是一样的。
C++代码如下:
class Solution {
public:int climbStairs(int n) {vector<int> dp(n + 1, 0);dp[0] = 1;for (int i = 1; i <= n; i++) { // 遍历背包for (int j = 1; j <= 2; j++) { // 遍历物品if (i - j >= 0) dp[i] += dp[i - j];}}return dp[n];}
};
322. 零钱兑换
题目链接
解题思路:题目中说每种硬币的数量是无限的,可以看出是典型的完全背包问题。
动规五部曲分析如下:
1. 确定dp数组以及下标的含义
dp[j]
:凑足总额为j所需钱币的最少个数为dp[j]
2.确定递推公式
凑足总额为j - coins[i]
的最少个数为dp[j - coins[i]]
,那么只需要加上一个钱币coins[i]
即dp[j - coins[i]] + 1
就是dp[j]
(考虑coins[i]
)
所以dp[j] 要取所有 dp[j - coins[i]] + 1
中最小的。
递推公式:dp[j] = min(dp[j - coins[i]] + 1, dp[j])
;
3.dp数组如何初始化
首先凑足总金额为0所需钱币的个数一定是0,那么dp[0] = 0
;
其他下标对应的数值呢?
考虑到递推公式的特性,dp[j]必须初始化为一个最大的数,否则就会在min(dp[j - coins[i]] + 1, dp[j])
比较的过程中被初始值覆盖。
所以下标非0的元素都是应该是最大值。
代码如下:
vector<int> dp(amount + 1, INT_MAX);
dp[0] = 0;
4.确定遍历顺序
本题求钱币最小个数,那么钱币有顺序和没有顺序都可以,都不影响钱币的最小个数。
所以本题并不强调集合是组合还是排列。
如果求组合数就是外层for循环遍历物品,内层for遍历背包。
如果求排列数就是外层for遍历背包,内层for循环遍历物品。
所以本题的两个for循环的关系是:外层for循环遍历物品,内层for遍历背包或者外层for遍历背包,内层for循环遍历物品都是可以的!
那么采用coins放在外循环,target在内循环的方式。
本题钱币数量可以无限使用,那么是完全背包。所以遍历的内循环是正序
综上所述,遍历顺序为:coins(物品)放在外循环,target(背包)在内循环。且内循环正序。
5.举例推导dp数组
以输入:coins = [1, 2, 5], amount = 5为例
class Solution {
public:int coinChange(vector<int>& coins, int amount) {vector<int> dp(amount + 1, INT_MAX);dp[0] = 0;for (int i = 0; i < coins.size(); i++) { // 遍历物品for (int j = coins[i]; j <= amount; j++) { // 遍历背包if (dp[j - coins[i]] != INT_MAX) { // 如果dp[j - coins[i]]是初始值则跳过dp[j] = min(dp[j - coins[i]] + 1, dp[j]);}}}if (dp[amount] == INT_MAX) return -1;return dp[amount];}
};
279.完全平方数
题目链接
解题思路:完全平方数就是物品(可以无限件使用),凑个正整数n就是背包,问凑满这个背包最少有多少物品。
动规五部曲分析如下:
1. 确定dp数组(dp table)以及下标的含义
dp[j]
:和为j的完全平方数的最少数量为dp[j]
2.确定递推公式
dp[j]
可以由dp[j - i * i]
推出, dp[j - i * i] + 1
便可以凑成dp[j]
。
此时我们要选择最小的dp[j]
,所以递推公式:dp[j] = min(dp[j - i * i] + 1, dp[j])
;
3.dp数组如何初始化
dp[0]
表示 和为0的完全平方数的最小数量,那么dp[0]一定是0。
有同学问题,那0 * 0 也算是一种啊,为啥dp[0] 就是 0呢?
看题目描述,找到若干个完全平方数(比如 1, 4, 9, 16, …),题目描述中可没说要从0开始,dp[0]=0
完全是为了递推公式。
非0下标的dp[j]
应该是多少呢?
从递归公式dp[j] = min(dp[j - i * i] + 1, dp[j])
;中可以看出每次dp[j]
都要选最小的,所以非0下标的dp[j]一定要初始为最大值,这样dp[j]在递推的时候才不会被初始值覆盖。
4.确定遍历顺序
我们知道这是完全背包,
如果求组合数就是外层for循环遍历物品,内层for遍历背包。
如果求排列数就是外层for遍历背包,内层for循环遍历物品。
所以本题外层for遍历背包,内层for遍历物品,还是外层for遍历物品,内层for遍历背包,都是可以的!
我这里先给出外层遍历背包,内层遍历物品的代码:
vector<int> dp(n + 1, INT_MAX);
dp[0] = 0;
for (int i = 0; i <= n; i++) { // 遍历背包for (int j = 1; j * j <= i; j++) { // 遍历物品dp[i] = min(dp[i - j * j] + 1, dp[i]);}
}
5.举例推导dp数组
已输入n为5例,dp状态图如下:
dp[0] = 0 dp[1] = min(dp[0] + 1) = 1 dp[2] = min(dp[1] + 1) = 2 dp[3] = min(dp[2] + 1) = 3 dp[4] = min(dp[3] + 1, dp[0] + 1) = 1 dp[5] = min(dp[4] + 1, dp[1] + 1) = 2
最后的dp[n]为最终结果。
整体代码如下:
class Solution {
public:int numSquares(int n) {vector<int> dp(n + 1, INT_MAX);dp[0] = 0;for (int i = 0; i <= n; i++) { // 遍历背包for (int j = 1; j * j <= i; j++) { // 遍历物品dp[i] = min(dp[i - j * j] + 1, dp[i]);}}return dp[n];}
};
这篇关于代码随想录算法训练营三刷 day45 | 动态规划 之 70. 爬楼梯 (进阶) 322. 零钱兑换 279.完全平方数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!