YOLOv5改进 | 注意力篇 | 利用YOLO-Face提出的SEAM注意力机制优化物体遮挡检测(附代码 + 修改教程)

本文主要是介绍YOLOv5改进 | 注意力篇 | 利用YOLO-Face提出的SEAM注意力机制优化物体遮挡检测(附代码 + 修改教程),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、本文介绍

本文给大家带来的改进机制是由YOLO-Face提出能够改善物体遮挡检测的注意力机制SEAM,SEAM(Spatially Enhanced Attention Module)注意力网络模块旨在补偿被遮挡面部的响应损失,通过增强未遮挡面部的响应来实现这一目标,其希望通过学习遮挡面和未遮挡面之间的关系来改善遮挡情况下的损失从而达到改善物体遮挡检测的效果,本文将通过介绍其主要原理后,提供该机制的代码和修改教程,并附上运行的yaml文件和运行代码,小白也可轻松上手。。

欢迎大家订阅我的专栏一起学习YOLO! 

  专栏回顾:YOLOv5改进专栏——持续复现各种顶会内容——内含100+创新

目录

一、本文介绍

二、原理介绍

2.1 遮挡改进

2.2 SEAM模块

2.3 排斥损失 

三、核心代码

四、添加教程

 4.1 修改一

4.2 修改二 

4.3 修改三 

4.4 修改四 

五、SEAM的yaml文件和运行记录

5.1 SEAM的yaml文件

5.2 MultiSEAM的yaml文件

5.3 训练过程截图 

五、本文总结


二、原理介绍

2.1 遮挡改进

本文重点介绍遮挡改进,其主要体现在两个方面:注意力网络模块(SEAM)排斥损失(Repulsion Loss)

1. SEAM模块:SEAM(Spatially Enhanced Attention Module)注意力网络模块旨在补偿被遮挡面部的响应损失,通过增强未遮挡面部的响应来实现这一目标。SEAM模块通过深度可分离卷积和残差连接的组合来实现,其中深度可分离卷积按通道进行操作,虽然可以学习不同通道的重要性并减少参数量,但忽略了通道间的信息关系。为了弥补这一损失,不同深度卷积的输出通过点对点(1x1)卷积组合。然后使用两层全连接网络融合每个通道的信息,以增强所有通道之间的联系。这种模型希望通过学习遮挡面和未遮挡面之间的关系,来弥补遮挡情况下的损失。

2. 排斥损失(Repulsion Loss):一种设计来处理面部遮挡问题的损失函数。具体来说,排斥损失被分为两部分:RepGT和RepBox。RepGT的功能是使当前的边界框尽可能远离周围的真实边界框,而RepBox的目的是使预测框尽可能远离周围的预测框,从而减少它们之间的IOU,以避免某个预测框被NMS抑制,从而属于两个面部。


2.2 SEAM模块

下图展示了SEAM(Separated and Enhancement Attention Module)的架构以及CSMM(Channel and Spatial Mixing Module)的结构

左侧是SEAM的整体架构,包括三个不同尺寸(patch-6、patch-7、patch-8)的CSMM模块。这些模块的输出进行平均池化,然后通过通道扩展(Channel exp)操作,最后相乘以提供增强的特征表示。右侧是CSMM模块的详细结构,它通过不同尺寸的patch来利用多尺度特征,并使用深度可分离卷积来学习空间维度和通道之间的相关性。模块包括了以下元素:

(a)Patch Embedding:对输入的patch进行嵌入。
(b)GELU:Gaussian Error Linear Unit,一种激活函数。
(c)BatchNorm:批量归一化,用于加速训练过程并提高性能。
(d)Depthwise Convolution:深度可分离卷积,对每个输入通道分别进行卷积操作。
(f)Pointwise Convolution:逐点卷积,其使用1x1的卷积核来融合深度可分离卷积的特征。

这种模块设计旨在通过对空间维度和通道的细致处理,从而增强网络对遮挡面部特征的注意力和捕捉能力。通过综合利用多尺度特征和深度可分离卷积,CSMM在保持计算效率的同时,提高了特征提取的精确度。这对于面部检测尤其重要,因为面部特征的大小、形状和遮挡程度可以在不同情况下大相径庭。通过SEAM和CSMM,YOLO-FaceV2提高了模型对复杂场景中各种面部特征的识别能力。


2.3 排斥损失 

排斥损失(Repulsion Loss)是一种用于处理面部检测中遮挡问题的损失函数。在面部检测中,类内遮挡可能会导致一个面部包含另一个面部的特征,从而增加错误检测率。排斥损失能够有效地通过排斥效应来缓解这一问题。排斥损失被分为两个部分:RepGTRepBox

(a)RepGT损失:其功能是使当前边界框尽可能远离周围的真实边界框。这里的“周围真实边界框”指的是与除了要预测的边界框外的面部标签具有最大IoU的那个边界框。RepGT损失的计算方法如下:

L_{\text{RepGT}} = \sum_{P \in P^+} \text{SmoothLn}(\text{IoG}(P, G_{\text{Rep}}))

其中,P代表面部预测框,G_{\text{Rep}}是周围具有最大IoU的真实边界框。这里的IoG(Intersection over Ground truth)定义为\frac{\text{area}(P \cap G)}{\text{area}(G)},且其值范围在0到1之间。SmoothLn是一个连续可导的对数函数,\sigma是一个在[0,1)范围内的平滑参数,用于调整排斥损失对异常值的敏感度。

(b)RepBox损失:其目的是使预测框尽可能远离周围的预测框,从而减少它们之间的IOU,以避免一个预测框因NMS(非最大抑制)而被压制,并归属于两个面部。预测框被分成多个组,不同组之间的预测框对应不同的面部标签。对于不同组之间的预测框p_ip_j,希望它们之间的重叠面积尽可能小。RepBox也使用SmoothLn作为优化函数。

L_{\text{RepBox}} = \sum_{i \neq j} \text{SmoothLn}(\text{IoU}(B_{p_i}, B_{p_j}))

排斥损失通过使边界框之间保持距离,减少预测框之间的重叠,从而提高面部检测在遮挡情况下的准确性。


三、核心代码

代码的使用方式看章节四!

import torch
import torch.nn as nn__all__ = ['SEAM', 'MultiSEAM']class Residual(nn.Module):def __init__(self, fn):super(Residual, self).__init__()self.fn = fndef forward(self, x):return self.fn(x) + xclass SEAM(nn.Module):def __init__(self, c1, c2, n, reduction=16):super(SEAM, self).__init__()if c1 != c2:c2 = c1self.DCovN = nn.Sequential(# nn.Conv2d(c1, c2, kernel_size=3, stride=1, padding=1, groups=c1),# nn.GELU(),# nn.BatchNorm2d(c2),*[nn.Sequential(Residual(nn.Sequential(nn.Conv2d(in_channels=c2, out_channels=c2, kernel_size=3, stride=1, padding=1, groups=c2),nn.GELU(),nn.BatchNorm2d(c2))),nn.Conv2d(in_channels=c2, out_channels=c2, kernel_size=1, stride=1, padding=0, groups=1),nn.GELU(),nn.BatchNorm2d(c2)) for i in range(n)])self.avg_pool = torch.nn.AdaptiveAvgPool2d(1)self.fc = nn.Sequential(nn.Linear(c2, c2 // reduction, bias=False),nn.ReLU(inplace=True),nn.Linear(c2 // reduction, c2, bias=False),nn.Sigmoid())self._initialize_weights()# self.initialize_layer(self.avg_pool)self.initialize_layer(self.fc)def forward(self, x):b, c, _, _ = x.size()y = self.DCovN(x)y = self.avg_pool(y).view(b, c)y = self.fc(y).view(b, c, 1, 1)y = torch.exp(y)return x * y.expand_as(x)def _initialize_weights(self):for m in self.modules():if isinstance(m, nn.Conv2d):nn.init.xavier_uniform_(m.weight, gain=1)elif isinstance(m, nn.BatchNorm2d):nn.init.constant_(m.weight, 1)nn.init.constant_(m.bias, 0)def initialize_layer(self, layer):if isinstance(layer, (nn.Conv2d, nn.Linear)):torch.nn.init.normal_(layer.weight, mean=0., std=0.001)if layer.bias is not None:torch.nn.init.constant_(layer.bias, 0)def DcovN(c1, c2, depth, kernel_size=3, patch_size=3):dcovn = nn.Sequential(nn.Conv2d(c1, c2, kernel_size=patch_size, stride=patch_size),nn.SiLU(),nn.BatchNorm2d(c2),*[nn.Sequential(Residual(nn.Sequential(nn.Conv2d(in_channels=c2, out_channels=c2, kernel_size=kernel_size, stride=1, padding=1, groups=c2),nn.SiLU(),nn.BatchNorm2d(c2))),nn.Conv2d(in_channels=c2, out_channels=c2, kernel_size=1, stride=1, padding=0, groups=1),nn.SiLU(),nn.BatchNorm2d(c2)) for i in range(depth)])return dcovnclass MultiSEAM(nn.Module):def __init__(self, c1, c2, depth, kernel_size=3, patch_size=[3, 5, 7], reduction=16):super(MultiSEAM, self).__init__()if c1 != c2:c2 = c1self.DCovN0 = DcovN(c1, c2, depth, kernel_size=kernel_size, patch_size=patch_size[0])self.DCovN1 = DcovN(c1, c2, depth, kernel_size=kernel_size, patch_size=patch_size[1])self.DCovN2 = DcovN(c1, c2, depth, kernel_size=kernel_size, patch_size=patch_size[2])self.avg_pool = torch.nn.AdaptiveAvgPool2d(1)self.fc = nn.Sequential(nn.Linear(c2, c2 // reduction, bias=False),nn.ReLU(inplace=True),nn.Linear(c2 // reduction, c2, bias=False),nn.Sigmoid())def forward(self, x):b, c, _, _ = x.size()y0 = self.DCovN0(x)y1 = self.DCovN1(x)y2 = self.DCovN2(x)y0 = self.avg_pool(y0).view(b, c)y1 = self.avg_pool(y1).view(b, c)y2 = self.avg_pool(y2).view(b, c)y4 = self.avg_pool(x).view(b, c)y = (y0 + y1 + y2 + y4) / 4y = self.fc(y).view(b, c, 1, 1)y = torch.exp(y)return x * y.expand_as(x)


四、添加教程

 4.1 修改一

第一还是建立文件,我们找到如下yolov5-master/models文件夹下建立一个目录名字呢就是'modules'文件夹(用群内的文件的话已经有了无需新建)!然后在其内部建立一个新的py文件将核心代码复制粘贴进去即可。


4.2 修改二 

第二步我们在该目录下创建一个新的py文件名字为'__init__.py'(用群内的文件的话已经有了无需新建),然后在其内部导入我们的检测头如下图所示。


4.3 修改三 

第三步我门中到如下文件'yolov5-master/models/yolo.py'进行导入和注册我们的模块(用群内的文件的话已经有了无需重新导入直接开始第四步即可)

从今天开始以后的教程就都统一成这个样子了,因为我默认大家用了我群内的文件来进行修改!!


4.4 修改四 

按照我的添加在parse_model里添加即可。

到此就修改完成了,大家可以复制下面的yaml文件运行。


五、SEAM的yaml文件和运行记录

5.1 SEAM的yaml文件

# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license# Parameters
nc: 80  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.25  # layer channel multiple
anchors:- [10,13, 16,30, 33,23]  # P3/8- [30,61, 62,45, 59,119]  # P4/16- [116,90, 156,198, 373,326]  # P5/32# YOLOv5 v6.0 backbone
backbone:# [from, number, module, args][[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2[-1, 1, Conv, [128, 3, 2]], # 1-P2/4[-1, 3, C3, [128]],[-1, 1, Conv, [256, 3, 2]], # 3-P3/8[-1, 6, C3, [256]],[-1, 1, Conv, [512, 3, 2]], # 5-P4/16[-1, 9, C3, [512]],[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32[-1, 3, C3, [1024]],[-1, 1, SPPF, [1024, 5]], # 9]# YOLOv5 v6.0 head
head: [[-1, 1, Conv, [512, 1, 1]],[-1, 1, nn.Upsample, [None, 2, "nearest"]],[[-1, 6], 1, Concat, [1]], # cat backbone P4[-1, 3, C3, [512, False]], # 13[-1, 1, Conv, [256, 1, 1]],[-1, 1, nn.Upsample, [None, 2, "nearest"]],[[-1, 4], 1, Concat, [1]], # cat backbone P3[-1, 3, C3, [256, False]], # 17 (P3/8-small)[-1, 1, Conv, [256, 3, 2]],[[-1, 14], 1, Concat, [1]], # cat head P4[-1, 3, C3, [512, False]], # 20 (P4/16-medium)[-1, 1, Conv, [512, 3, 2]],[[-1, 10], 1, Concat, [1]], # cat head P5[-1, 3, C3, [1024, False]], # 23 (P5/32-large)[-1, 1, SEAM, [1024, 1]],[[17, 20, 24], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)]

5.2 MultiSEAM的yaml文件

# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license# Parameters
nc: 80  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.25  # layer channel multiple
anchors:- [10,13, 16,30, 33,23]  # P3/8- [30,61, 62,45, 59,119]  # P4/16- [116,90, 156,198, 373,326]  # P5/32# YOLOv5 v6.0 backbone
backbone:# [from, number, module, args][[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2[-1, 1, Conv, [128, 3, 2]], # 1-P2/4[-1, 3, C3, [128]],[-1, 1, Conv, [256, 3, 2]], # 3-P3/8[-1, 6, C3, [256]],[-1, 1, Conv, [512, 3, 2]], # 5-P4/16[-1, 9, C3, [512]],[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32[-1, 3, C3, [1024]],[-1, 1, SPPF, [1024, 5]], # 9]# YOLOv5 v6.0 head
head: [[-1, 1, Conv, [512, 1, 1]],[-1, 1, nn.Upsample, [None, 2, "nearest"]],[[-1, 6], 1, Concat, [1]], # cat backbone P4[-1, 3, C3, [512, False]], # 13[-1, 1, Conv, [256, 1, 1]],[-1, 1, nn.Upsample, [None, 2, "nearest"]],[[-1, 4], 1, Concat, [1]], # cat backbone P3[-1, 3, C3, [256, False]], # 17 (P3/8-small)[-1, 1, MultiSEAM, [256, 1]],[-1, 1, Conv, [256, 3, 2]],[[-1, 14], 1, Concat, [1]], # cat head P4[-1, 3, C3, [512, False]], # 21 (P4/16-medium)[-1, 1, MultiSEAM, [512, 1]], # 22[-1, 1, Conv, [512, 3, 2]],[[-1, 10], 1, Concat, [1]], # cat head P5[-1, 3, C3, [1024, False]], # 25 (P5/32-large)[-1, 1, MultiSEAM, [1024, 1]], # 26[[18, 22, 26], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)]


5.3 训练过程截图 


五、本文总结

到此本文的正式分享内容就结束了,在这里给大家推荐我的YOLOv8改进有效涨点专栏,本专栏目前为新开的平均质量分98分,后期我会根据各种最新的前沿顶会进行论文复现,也会对一些老的改进机制进行补充,如果大家觉得本文帮助到你了,订阅本专栏,关注后续更多的更新~

  专栏回顾:YOLOv5改进专栏——持续复现各种顶会内容——内含100+创新

这篇关于YOLOv5改进 | 注意力篇 | 利用YOLO-Face提出的SEAM注意力机制优化物体遮挡检测(附代码 + 修改教程)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/803811

相关文章

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一

在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码

《在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码》在MyBatis的XML映射文件中,trim元素用于动态添加SQL语句的一部分,处理前缀、后缀及多余的逗号或连接符,示... 在MyBATis的XML映射文件中,<trim>元素用于动态地添加SQL语句的一部分,例如SET或W

一文带你理解Python中import机制与importlib的妙用

《一文带你理解Python中import机制与importlib的妙用》在Python编程的世界里,import语句是开发者最常用的工具之一,它就像一把钥匙,打开了通往各种功能和库的大门,下面就跟随小... 目录一、python import机制概述1.1 import语句的基本用法1.2 模块缓存机制1.

使用C#代码计算数学表达式实例

《使用C#代码计算数学表达式实例》这段文字主要讲述了如何使用C#语言来计算数学表达式,该程序通过使用Dictionary保存变量,定义了运算符优先级,并实现了EvaluateExpression方法来... 目录C#代码计算数学表达式该方法很长,因此我将分段描述下面的代码片段显示了下一步以下代码显示该方法如

龙蜥操作系统Anolis OS-23.x安装配置图解教程(保姆级)

《龙蜥操作系统AnolisOS-23.x安装配置图解教程(保姆级)》:本文主要介绍了安装和配置AnolisOS23.2系统,包括分区、软件选择、设置root密码、网络配置、主机名设置和禁用SELinux的步骤,详细内容请阅读本文,希望能对你有所帮助... ‌AnolisOS‌是由阿里云推出的开源操作系统,旨

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Redis缓存问题与缓存更新机制详解

《Redis缓存问题与缓存更新机制详解》本文主要介绍了缓存问题及其解决方案,包括缓存穿透、缓存击穿、缓存雪崩等问题的成因以及相应的预防和解决方法,同时,还详细探讨了缓存更新机制,包括不同情况下的缓存更... 目录一、缓存问题1.1 缓存穿透1.1.1 问题来源1.1.2 解决方案1.2 缓存击穿1.2.1

PyTorch使用教程之Tensor包详解

《PyTorch使用教程之Tensor包详解》这篇文章介绍了PyTorch中的张量(Tensor)数据结构,包括张量的数据类型、初始化、常用操作、属性等,张量是PyTorch框架中的核心数据结构,支持... 目录1、张量Tensor2、数据类型3、初始化(构造张量)4、常用操作5、常用属性5.1 存储(st

Java如何通过反射机制获取数据类对象的属性及方法

《Java如何通过反射机制获取数据类对象的属性及方法》文章介绍了如何使用Java反射机制获取类对象的所有属性及其对应的get、set方法,以及如何通过反射机制实现类对象的实例化,感兴趣的朋友跟随小编一... 目录一、通过反射机制获取类对象的所有属性以及相应的get、set方法1.遍历类对象的所有属性2.获取

Java操作PDF文件实现签订电子合同详细教程

《Java操作PDF文件实现签订电子合同详细教程》:本文主要介绍如何在PDF中加入电子签章与电子签名的过程,包括编写Word文件、生成PDF、为PDF格式做表单、为表单赋值、生成文档以及上传到OB... 目录前言:先看效果:1.编写word文件1.2然后生成PDF格式进行保存1.3我这里是将文件保存到本地后