代码随想录算法训练营第三十八天丨动态规划理论基础、509. 斐波那契数、70. 爬楼梯、746. 使用最小花费爬楼梯

本文主要是介绍代码随想录算法训练营第三十八天丨动态规划理论基础、509. 斐波那契数、70. 爬楼梯、746. 使用最小花费爬楼梯,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

动态规划理论基础:

春节时候详细读了算法导论中的动态规划章节,结合书本和代码随想录网站做一个理论总结。

动态规划(Dynamic Programming, DP)是解决一类特定问题的算法思想,常用于求解最优化问题。动态规划的核心思想是将原问题拆解成一系列子问题,通过解决子问题,进而解决原问题。这种方法特别适用于那些具有重叠子问题和最优子结构性质的问题。动态规划关键在于掌握这两个概念:

  1. 重叠子问题:在求解过程中,相同的子问题会被多次求解。
  2. 最优子结构:一个问题的最优解包含其子问题的最优解。

动态规划通常用来解决两类问题:最优化问题和计数问题。最优化问题要求我们找到最好的解决方案,而计数问题要求我们找出满足某些条件的解的总数。

动态规划的基本步骤

动态规划解题通常遵循以下几个基本步骤:

  1. 定义状态(dp数组):确定状态变量,这些变量通常是问题的参数,用于描述问题的各个阶段或者子问题。
  2. 确定状态转移方程(递推式):找出状态之间的关系,即如何从一个或多个较小的子问题的解得到当前问题的解。
  3. 初始化状态(dp数组初始化):确定初始条件,即最基本的子问题的解。
  4. 计算顺序:确定计算状态的顺序,有时可能需要按特定顺序进行,以确保在计算当前状态时,所需的所有子状态都已被计算。
  5. 解决问题:根据以上步骤解决问题,并根据需要找到最终解。

解题思路

动态规划的解题思路可以从以下几个方面入手:

  • 问题拆解:识别问题是否可以分解为相似的子问题。
  • 子问题重叠:检查子问题是否重叠,即是否有多个路径到达同一子问题,这是动态规划适用的关键。
  • 备忘:为避免重复计算相同的子问题,可以通过备忘(使用数组或哈希表存储已解决的子问题的结果)来优化。
  • 构建DP表:有时候可以构建一个表格(通常是二维或三维的),来系统地解决所有子问题,并保存它们的结果。
  • 寻找边界条件:确定解决问题所需的最基本子问题(即边界条件)及其解,作为递推的基础。

509. 斐波那契数

练习DP的入门题,先练习动态规划的基本步骤:

class Solution:def fib(self, n: int) -> int:dp = [0] * (n + 1)if n > 0: dp[1] = 1for i in range(2, n + 1):dp[i] = dp[i - 1] + dp[i - 2]return dp[n]

 由于当前状态只和前两个状态有关,可以优化空间复杂度:

class Solution:def fib(self, n: int) -> int:if n < 2:return nprev = 0cur = 1for i in range(1, n):prev, cur = cur, prev + curreturn cur

70. 爬楼梯

dp[0]没有意义,不需要初始化。

class Solution:def climbStairs(self, n: int) -> int:dp = [0] * (n + 1)if n < 4:return ndp[1], dp[2] = 1, 2for i in range(3, n + 1):dp[i] = dp[i - 1] + dp[i - 2]return dp[n]
class Solution:def climbStairs(self, n: int) -> int:if n < 4:return nprev, cur = 1, 2for _ in range(n - 2):prev, cur = cur, cur + prevreturn cur

746. 使用最小花费爬楼梯

支付费用后才能开始爬楼梯,楼顶在index=n的位置。

class Solution:def minCostClimbingStairs(self, cost: List[int]) -> int:n  = len(cost)if n < 3:return min(cost)dp = [0] * (n + 1)for i in range(2, n + 1):dp[i] = min(dp[i - 2] + cost[i - 2], dp[i - 1] + cost[i - 1])return dp[n]
class Solution:def minCostClimbingStairs(self, cost: List[int]) -> int:n  = len(cost)if n < 3:return min(cost)prev, cur =0, 0for i in range(2, n + 1):prev, cur = cur, min(prev + cost[i - 2], cur + cost[i - 1])return cur

今日总结:

一刷动态规划,加油。

通过解决斐波那契数、爬楼梯和最小花费爬楼梯三个经典问题,加深对DP的理解。学习包括状态定义、转移方程的确定、初始化及计算顺序,实践了空间复杂度优化。这些简单题练习加强了将理论应用于实际问题解决的能力,体现动态规划在解决具有重叠子问题和最优子结构问题中的有效性。

这篇关于代码随想录算法训练营第三十八天丨动态规划理论基础、509. 斐波那契数、70. 爬楼梯、746. 使用最小花费爬楼梯的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/732236

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

第10章 中断和动态时钟显示

第10章 中断和动态时钟显示 从本章开始,按照书籍的划分,第10章开始就进入保护模式(Protected Mode)部分了,感觉从这里开始难度突然就增加了。 书中介绍了为什么有中断(Interrupt)的设计,中断的几种方式:外部硬件中断、内部中断和软中断。通过中断做了一个会走的时钟和屏幕上输入字符的程序。 我自己理解中断的一些作用: 为了更好的利用处理器的性能。协同快速和慢速设备一起工作

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖