代码随想录算法训练营第三十八天丨动态规划理论基础、509. 斐波那契数、70. 爬楼梯、746. 使用最小花费爬楼梯

本文主要是介绍代码随想录算法训练营第三十八天丨动态规划理论基础、509. 斐波那契数、70. 爬楼梯、746. 使用最小花费爬楼梯,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

动态规划理论基础:

春节时候详细读了算法导论中的动态规划章节,结合书本和代码随想录网站做一个理论总结。

动态规划(Dynamic Programming, DP)是解决一类特定问题的算法思想,常用于求解最优化问题。动态规划的核心思想是将原问题拆解成一系列子问题,通过解决子问题,进而解决原问题。这种方法特别适用于那些具有重叠子问题和最优子结构性质的问题。动态规划关键在于掌握这两个概念:

  1. 重叠子问题:在求解过程中,相同的子问题会被多次求解。
  2. 最优子结构:一个问题的最优解包含其子问题的最优解。

动态规划通常用来解决两类问题:最优化问题和计数问题。最优化问题要求我们找到最好的解决方案,而计数问题要求我们找出满足某些条件的解的总数。

动态规划的基本步骤

动态规划解题通常遵循以下几个基本步骤:

  1. 定义状态(dp数组):确定状态变量,这些变量通常是问题的参数,用于描述问题的各个阶段或者子问题。
  2. 确定状态转移方程(递推式):找出状态之间的关系,即如何从一个或多个较小的子问题的解得到当前问题的解。
  3. 初始化状态(dp数组初始化):确定初始条件,即最基本的子问题的解。
  4. 计算顺序:确定计算状态的顺序,有时可能需要按特定顺序进行,以确保在计算当前状态时,所需的所有子状态都已被计算。
  5. 解决问题:根据以上步骤解决问题,并根据需要找到最终解。

解题思路

动态规划的解题思路可以从以下几个方面入手:

  • 问题拆解:识别问题是否可以分解为相似的子问题。
  • 子问题重叠:检查子问题是否重叠,即是否有多个路径到达同一子问题,这是动态规划适用的关键。
  • 备忘:为避免重复计算相同的子问题,可以通过备忘(使用数组或哈希表存储已解决的子问题的结果)来优化。
  • 构建DP表:有时候可以构建一个表格(通常是二维或三维的),来系统地解决所有子问题,并保存它们的结果。
  • 寻找边界条件:确定解决问题所需的最基本子问题(即边界条件)及其解,作为递推的基础。

509. 斐波那契数

练习DP的入门题,先练习动态规划的基本步骤:

class Solution:def fib(self, n: int) -> int:dp = [0] * (n + 1)if n > 0: dp[1] = 1for i in range(2, n + 1):dp[i] = dp[i - 1] + dp[i - 2]return dp[n]

 由于当前状态只和前两个状态有关,可以优化空间复杂度:

class Solution:def fib(self, n: int) -> int:if n < 2:return nprev = 0cur = 1for i in range(1, n):prev, cur = cur, prev + curreturn cur

70. 爬楼梯

dp[0]没有意义,不需要初始化。

class Solution:def climbStairs(self, n: int) -> int:dp = [0] * (n + 1)if n < 4:return ndp[1], dp[2] = 1, 2for i in range(3, n + 1):dp[i] = dp[i - 1] + dp[i - 2]return dp[n]
class Solution:def climbStairs(self, n: int) -> int:if n < 4:return nprev, cur = 1, 2for _ in range(n - 2):prev, cur = cur, cur + prevreturn cur

746. 使用最小花费爬楼梯

支付费用后才能开始爬楼梯,楼顶在index=n的位置。

class Solution:def minCostClimbingStairs(self, cost: List[int]) -> int:n  = len(cost)if n < 3:return min(cost)dp = [0] * (n + 1)for i in range(2, n + 1):dp[i] = min(dp[i - 2] + cost[i - 2], dp[i - 1] + cost[i - 1])return dp[n]
class Solution:def minCostClimbingStairs(self, cost: List[int]) -> int:n  = len(cost)if n < 3:return min(cost)prev, cur =0, 0for i in range(2, n + 1):prev, cur = cur, min(prev + cost[i - 2], cur + cost[i - 1])return cur

今日总结:

一刷动态规划,加油。

通过解决斐波那契数、爬楼梯和最小花费爬楼梯三个经典问题,加深对DP的理解。学习包括状态定义、转移方程的确定、初始化及计算顺序,实践了空间复杂度优化。这些简单题练习加强了将理论应用于实际问题解决的能力,体现动态规划在解决具有重叠子问题和最优子结构问题中的有效性。

这篇关于代码随想录算法训练营第三十八天丨动态规划理论基础、509. 斐波那契数、70. 爬楼梯、746. 使用最小花费爬楼梯的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/732236

相关文章

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

Spring Security简介、使用与最佳实践

《SpringSecurity简介、使用与最佳实践》SpringSecurity是一个能够为基于Spring的企业应用系统提供声明式的安全访问控制解决方案的安全框架,本文给大家介绍SpringSec... 目录一、如何理解 Spring Security?—— 核心思想二、如何在 Java 项目中使用?——

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

springboot中使用okhttp3的小结

《springboot中使用okhttp3的小结》OkHttp3是一个JavaHTTP客户端,可以处理各种请求类型,比如GET、POST、PUT等,并且支持高效的HTTP连接池、请求和响应缓存、以及异... 在 Spring Boot 项目中使用 OkHttp3 进行 HTTP 请求是一个高效且流行的方式。

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

Java使用Javassist动态生成HelloWorld类

《Java使用Javassist动态生成HelloWorld类》Javassist是一个非常强大的字节码操作和定义库,它允许开发者在运行时创建新的类或者修改现有的类,本文将简单介绍如何使用Javass... 目录1. Javassist简介2. 环境准备3. 动态生成HelloWorld类3.1 创建CtC

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Java使用jar命令配置服务器端口的完整指南

《Java使用jar命令配置服务器端口的完整指南》本文将详细介绍如何使用java-jar命令启动应用,并重点讲解如何配置服务器端口,同时提供一个实用的Web工具来简化这一过程,希望对大家有所帮助... 目录1. Java Jar文件简介1.1 什么是Jar文件1.2 创建可执行Jar文件2. 使用java

C#使用Spire.Doc for .NET实现HTML转Word的高效方案

《C#使用Spire.Docfor.NET实现HTML转Word的高效方案》在Web开发中,HTML内容的生成与处理是高频需求,然而,当用户需要将HTML页面或动态生成的HTML字符串转换为Wor... 目录引言一、html转Word的典型场景与挑战二、用 Spire.Doc 实现 HTML 转 Word1