代码随想录算法训练营第三十八天丨动态规划理论基础、509. 斐波那契数、70. 爬楼梯、746. 使用最小花费爬楼梯

本文主要是介绍代码随想录算法训练营第三十八天丨动态规划理论基础、509. 斐波那契数、70. 爬楼梯、746. 使用最小花费爬楼梯,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

动态规划理论基础:

春节时候详细读了算法导论中的动态规划章节,结合书本和代码随想录网站做一个理论总结。

动态规划(Dynamic Programming, DP)是解决一类特定问题的算法思想,常用于求解最优化问题。动态规划的核心思想是将原问题拆解成一系列子问题,通过解决子问题,进而解决原问题。这种方法特别适用于那些具有重叠子问题和最优子结构性质的问题。动态规划关键在于掌握这两个概念:

  1. 重叠子问题:在求解过程中,相同的子问题会被多次求解。
  2. 最优子结构:一个问题的最优解包含其子问题的最优解。

动态规划通常用来解决两类问题:最优化问题和计数问题。最优化问题要求我们找到最好的解决方案,而计数问题要求我们找出满足某些条件的解的总数。

动态规划的基本步骤

动态规划解题通常遵循以下几个基本步骤:

  1. 定义状态(dp数组):确定状态变量,这些变量通常是问题的参数,用于描述问题的各个阶段或者子问题。
  2. 确定状态转移方程(递推式):找出状态之间的关系,即如何从一个或多个较小的子问题的解得到当前问题的解。
  3. 初始化状态(dp数组初始化):确定初始条件,即最基本的子问题的解。
  4. 计算顺序:确定计算状态的顺序,有时可能需要按特定顺序进行,以确保在计算当前状态时,所需的所有子状态都已被计算。
  5. 解决问题:根据以上步骤解决问题,并根据需要找到最终解。

解题思路

动态规划的解题思路可以从以下几个方面入手:

  • 问题拆解:识别问题是否可以分解为相似的子问题。
  • 子问题重叠:检查子问题是否重叠,即是否有多个路径到达同一子问题,这是动态规划适用的关键。
  • 备忘:为避免重复计算相同的子问题,可以通过备忘(使用数组或哈希表存储已解决的子问题的结果)来优化。
  • 构建DP表:有时候可以构建一个表格(通常是二维或三维的),来系统地解决所有子问题,并保存它们的结果。
  • 寻找边界条件:确定解决问题所需的最基本子问题(即边界条件)及其解,作为递推的基础。

509. 斐波那契数

练习DP的入门题,先练习动态规划的基本步骤:

class Solution:def fib(self, n: int) -> int:dp = [0] * (n + 1)if n > 0: dp[1] = 1for i in range(2, n + 1):dp[i] = dp[i - 1] + dp[i - 2]return dp[n]

 由于当前状态只和前两个状态有关,可以优化空间复杂度:

class Solution:def fib(self, n: int) -> int:if n < 2:return nprev = 0cur = 1for i in range(1, n):prev, cur = cur, prev + curreturn cur

70. 爬楼梯

dp[0]没有意义,不需要初始化。

class Solution:def climbStairs(self, n: int) -> int:dp = [0] * (n + 1)if n < 4:return ndp[1], dp[2] = 1, 2for i in range(3, n + 1):dp[i] = dp[i - 1] + dp[i - 2]return dp[n]
class Solution:def climbStairs(self, n: int) -> int:if n < 4:return nprev, cur = 1, 2for _ in range(n - 2):prev, cur = cur, cur + prevreturn cur

746. 使用最小花费爬楼梯

支付费用后才能开始爬楼梯,楼顶在index=n的位置。

class Solution:def minCostClimbingStairs(self, cost: List[int]) -> int:n  = len(cost)if n < 3:return min(cost)dp = [0] * (n + 1)for i in range(2, n + 1):dp[i] = min(dp[i - 2] + cost[i - 2], dp[i - 1] + cost[i - 1])return dp[n]
class Solution:def minCostClimbingStairs(self, cost: List[int]) -> int:n  = len(cost)if n < 3:return min(cost)prev, cur =0, 0for i in range(2, n + 1):prev, cur = cur, min(prev + cost[i - 2], cur + cost[i - 1])return cur

今日总结:

一刷动态规划,加油。

通过解决斐波那契数、爬楼梯和最小花费爬楼梯三个经典问题,加深对DP的理解。学习包括状态定义、转移方程的确定、初始化及计算顺序,实践了空间复杂度优化。这些简单题练习加强了将理论应用于实际问题解决的能力,体现动态规划在解决具有重叠子问题和最优子结构问题中的有效性。

这篇关于代码随想录算法训练营第三十八天丨动态规划理论基础、509. 斐波那契数、70. 爬楼梯、746. 使用最小花费爬楼梯的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/732236

相关文章

vue使用docxtemplater导出word

《vue使用docxtemplater导出word》docxtemplater是一种邮件合并工具,以编程方式使用并处理条件、循环,并且可以扩展以插入任何内容,下面我们来看看如何使用docxtempl... 目录docxtemplatervue使用docxtemplater导出word安装常用语法 封装导出方

Linux换行符的使用方法详解

《Linux换行符的使用方法详解》本文介绍了Linux中常用的换行符LF及其在文件中的表示,展示了如何使用sed命令替换换行符,并列举了与换行符处理相关的Linux命令,通过代码讲解的非常详细,需要的... 目录简介检测文件中的换行符使用 cat -A 查看换行符使用 od -c 检查字符换行符格式转换将

使用Jackson进行JSON生成与解析的新手指南

《使用Jackson进行JSON生成与解析的新手指南》这篇文章主要为大家详细介绍了如何使用Jackson进行JSON生成与解析处理,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 核心依赖2. 基础用法2.1 对象转 jsON(序列化)2.2 JSON 转对象(反序列化)3.

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

Elasticsearch 在 Java 中的使用教程

《Elasticsearch在Java中的使用教程》Elasticsearch是一个分布式搜索和分析引擎,基于ApacheLucene构建,能够实现实时数据的存储、搜索、和分析,它广泛应用于全文... 目录1. Elasticsearch 简介2. 环境准备2.1 安装 Elasticsearch2.2 J

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当

Java中List的contains()方法的使用小结

《Java中List的contains()方法的使用小结》List的contains()方法用于检查列表中是否包含指定的元素,借助equals()方法进行判断,下面就来介绍Java中List的c... 目录详细展开1. 方法签名2. 工作原理3. 使用示例4. 注意事项总结结论:List 的 contain

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

Android中Dialog的使用详解

《Android中Dialog的使用详解》Dialog(对话框)是Android中常用的UI组件,用于临时显示重要信息或获取用户输入,本文给大家介绍Android中Dialog的使用,感兴趣的朋友一起... 目录android中Dialog的使用详解1. 基本Dialog类型1.1 AlertDialog(