使用autodl服务器,在A40显卡上运行, Yi-34B-Chat-int4模型,并使用vllm优化加速,显存占用42G,速度18 words/s

本文主要是介绍使用autodl服务器,在A40显卡上运行, Yi-34B-Chat-int4模型,并使用vllm优化加速,显存占用42G,速度18 words/s,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1,演示视频

https://www.bilibili.com/video/BV1gu4y1c7KL/

使用autodl服务器,在A40显卡上运行, Yi-34B-Chat-int4模型,并使用vllm优化加速,显存占用42G,速度18 words/s

2,关于A40显卡,48GB 显存,安培架构

2020年,英伟达发布 A40 专业显卡,配备 48GB 显存。

采用了 GA102 GPU,拥有 10752 个 CUDA 核心。而 A40 是用于服务器的。A40 都配备了四个 DP 1.4 接口,都搭载了 48GB 的 GDDR6 显存,最大带宽为 696 GB/s。显卡的功耗为 300W,采用了全新的 8 pin 接口。

环境使用:
CPU :15 核心
内存:80 GB
GPU :NVIDIA A40, 1个

3,关于 Yi-34B 模型

11月24日,零一万物基正式发布并开源微调模型 Yi-34B-Chat,可申请免费商用。同时,零一万物还为开发者提供了 4bit/8bit 量化版模型,Yi-34B-Chat 4bit 量化版模型可以直接在消费级显卡(如RTX3090)上使用。

官方网站:
https://www.lingyiwanwu.com/

模型下载地址:
https://huggingface.co/01-ai/Yi-34B-Chat-8bits

github地址:
https://github.com/01-ai/Yi

下载后占空间:
68G Yi-34B-Chat-8bits

经测试:Yi-34B-Chat-4bits 没有启动成功,8bits启动成功了。
下模型文件花费时间比较多。

3,安装相关依赖,先安装最新的torch版本

apt update && apt install -y git-lfs net-tools
#
git clone https://www.modelscope.cn/01ai/Yi-34B-Chat-4bits.git# 1,安装 torch 模块,防止依赖多次下载
pip3 install torch==2.1.0# 2,安装 vllm 模块:
pip3 install vllm# 最后安装 
pip3 install "fschat[model_worker,webui]" auto-gptq optimum

安装完成之后就可以使用fastchat启动了。

4,使用 vllm 进行加速,可以加速 Yi-34B-Chat-4bits 模型

https://docs.vllm.ai/en/latest/getting_started/installation.html

官方网站:https://github.com/vllm-project/vllm

说明模型不支持这个 vllm ,需要切换成 Yi-34B-Chat-4bits 可以启动

ValueError: Unknown quantization method: gptq. Must be one of ['awq', 'squeezellm'].

增加参数:fastchat.serve.vllm_worker --quantization awq
就可以切换成 fastchat 的 vllm 模式:

# run_all_vllm_yi.sh# 清除全部 fastchat 服务
ps -ef | grep fastchat.serve | awk '{print$2}' | xargs kill -9
sleep 3rm -f *.log# 首先启动 controller :
nohup python3 -m fastchat.serve.controller --host 0.0.0.0 --port 21001 > controller.log 2>&1 &# 启动 openapi的 兼容服务 地址 8000
nohup python3 -m fastchat.serve.openai_api_server --controller-address http://127.0.0.1:21001 \--host 0.0.0.0 --port 8000 > api_server.log 2>&1 &# 启动 web ui
nohup python -m fastchat.serve.gradio_web_server --controller-address http://127.0.0.1:21001 \--host 0.0.0.0 --port 8000 > web_server.log 2>&1 &# 然后启动模型: 说明,必须是本地ip --load-8bit 本身已经是int4了
# nohup python3 -m fastchat.serve.model_worker  --model-names yi-34b \
#   --model-path ./Yi-34B-Chat-8bits --controller-address http://${IP_ADDR}:21001 \
#   --worker-address http://${IP_ADDR}:8080 --host 0.0.0.0 --port 8080 > model_worker.log 2>&1 &## 
nohup python3 -m fastchat.serve.vllm_worker --quantization awq --model-names yi-34b \--model-path ./Yi-34B-Chat-4bits --controller-address http://127.0.0.1:21001 \--worker-address http://127.0.0.1:8080 --host 0.0.0.0 --port 8080 > model_worker.log 2>&1 &

然后在测试下 token 效果:

python3 -m fastchat.serve.test_throughput --controller-address http://127.0.0.1:21001 --model-name yi-34b --n-thread 1throughput: 18.678158839922936 words/s.

5,总结

测试效果还可以,但是偶尔出现英文,需要说明强制转换成中文:

curl http://localhost:6006/v1/chat/completions   -H "Content-Type: application/json"   -d '{"model": "chatglm3-6b","messages": [{"role": "user", "content": "北京景点,使用中文回答"}],"temperature": 0.7}'

这篇关于使用autodl服务器,在A40显卡上运行, Yi-34B-Chat-int4模型,并使用vllm优化加速,显存占用42G,速度18 words/s的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/466675

相关文章

Android kotlin中 Channel 和 Flow 的区别和选择使用场景分析

《Androidkotlin中Channel和Flow的区别和选择使用场景分析》Kotlin协程中,Flow是冷数据流,按需触发,适合响应式数据处理;Channel是热数据流,持续发送,支持... 目录一、基本概念界定FlowChannel二、核心特性对比数据生产触发条件生产与消费的关系背压处理机制生命周期

java使用protobuf-maven-plugin的插件编译proto文件详解

《java使用protobuf-maven-plugin的插件编译proto文件详解》:本文主要介绍java使用protobuf-maven-plugin的插件编译proto文件,具有很好的参考价... 目录protobuf文件作为数据传输和存储的协议主要介绍在Java使用maven编译proto文件的插件

SpringBoot线程池配置使用示例详解

《SpringBoot线程池配置使用示例详解》SpringBoot集成@Async注解,支持线程池参数配置(核心数、队列容量、拒绝策略等)及生命周期管理,结合监控与任务装饰器,提升异步处理效率与系统... 目录一、核心特性二、添加依赖三、参数详解四、配置线程池五、应用实践代码说明拒绝策略(Rejected

C++ Log4cpp跨平台日志库的使用小结

《C++Log4cpp跨平台日志库的使用小结》Log4cpp是c++类库,本文详细介绍了C++日志库log4cpp的使用方法,及设置日志输出格式和优先级,具有一定的参考价值,感兴趣的可以了解一下... 目录一、介绍1. log4cpp的日志方式2.设置日志输出的格式3. 设置日志的输出优先级二、Window

Ubuntu如何分配​​未使用的空间

《Ubuntu如何分配​​未使用的空间》Ubuntu磁盘空间不足,实际未分配空间8.2G因LVM卷组名称格式差异(双破折号误写)导致无法扩展,确认正确卷组名后,使用lvextend和resize2fs... 目录1:原因2:操作3:报错5:解决问题:确认卷组名称​6:再次操作7:验证扩展是否成功8:问题已解

Qt使用QSqlDatabase连接MySQL实现增删改查功能

《Qt使用QSqlDatabase连接MySQL实现增删改查功能》这篇文章主要为大家详细介绍了Qt如何使用QSqlDatabase连接MySQL实现增删改查功能,文中的示例代码讲解详细,感兴趣的小伙伴... 目录一、创建数据表二、连接mysql数据库三、封装成一个完整的轻量级 ORM 风格类3.1 表结构

使用Docker构建Python Flask程序的详细教程

《使用Docker构建PythonFlask程序的详细教程》在当今的软件开发领域,容器化技术正变得越来越流行,而Docker无疑是其中的佼佼者,本文我们就来聊聊如何使用Docker构建一个简单的Py... 目录引言一、准备工作二、创建 Flask 应用程序三、创建 dockerfile四、构建 Docker

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

Python使用pip工具实现包自动更新的多种方法

《Python使用pip工具实现包自动更新的多种方法》本文深入探讨了使用Python的pip工具实现包自动更新的各种方法和技术,我们将从基础概念开始,逐步介绍手动更新方法、自动化脚本编写、结合CI/C... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

Conda与Python venv虚拟环境的区别与使用方法详解

《Conda与Pythonvenv虚拟环境的区别与使用方法详解》随着Python社区的成长,虚拟环境的概念和技术也在不断发展,:本文主要介绍Conda与Pythonvenv虚拟环境的区别与使用... 目录前言一、Conda 与 python venv 的核心区别1. Conda 的特点2. Python v