使用autodl服务器,在A40显卡上运行, Yi-34B-Chat-int4模型,并使用vllm优化加速,显存占用42G,速度18 words/s

本文主要是介绍使用autodl服务器,在A40显卡上运行, Yi-34B-Chat-int4模型,并使用vllm优化加速,显存占用42G,速度18 words/s,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1,演示视频

https://www.bilibili.com/video/BV1gu4y1c7KL/

使用autodl服务器,在A40显卡上运行, Yi-34B-Chat-int4模型,并使用vllm优化加速,显存占用42G,速度18 words/s

2,关于A40显卡,48GB 显存,安培架构

2020年,英伟达发布 A40 专业显卡,配备 48GB 显存。

采用了 GA102 GPU,拥有 10752 个 CUDA 核心。而 A40 是用于服务器的。A40 都配备了四个 DP 1.4 接口,都搭载了 48GB 的 GDDR6 显存,最大带宽为 696 GB/s。显卡的功耗为 300W,采用了全新的 8 pin 接口。

环境使用:
CPU :15 核心
内存:80 GB
GPU :NVIDIA A40, 1个

3,关于 Yi-34B 模型

11月24日,零一万物基正式发布并开源微调模型 Yi-34B-Chat,可申请免费商用。同时,零一万物还为开发者提供了 4bit/8bit 量化版模型,Yi-34B-Chat 4bit 量化版模型可以直接在消费级显卡(如RTX3090)上使用。

官方网站:
https://www.lingyiwanwu.com/

模型下载地址:
https://huggingface.co/01-ai/Yi-34B-Chat-8bits

github地址:
https://github.com/01-ai/Yi

下载后占空间:
68G Yi-34B-Chat-8bits

经测试:Yi-34B-Chat-4bits 没有启动成功,8bits启动成功了。
下模型文件花费时间比较多。

3,安装相关依赖,先安装最新的torch版本

apt update && apt install -y git-lfs net-tools
#
git clone https://www.modelscope.cn/01ai/Yi-34B-Chat-4bits.git# 1,安装 torch 模块,防止依赖多次下载
pip3 install torch==2.1.0# 2,安装 vllm 模块:
pip3 install vllm# 最后安装 
pip3 install "fschat[model_worker,webui]" auto-gptq optimum

安装完成之后就可以使用fastchat启动了。

4,使用 vllm 进行加速,可以加速 Yi-34B-Chat-4bits 模型

https://docs.vllm.ai/en/latest/getting_started/installation.html

官方网站:https://github.com/vllm-project/vllm

说明模型不支持这个 vllm ,需要切换成 Yi-34B-Chat-4bits 可以启动

ValueError: Unknown quantization method: gptq. Must be one of ['awq', 'squeezellm'].

增加参数:fastchat.serve.vllm_worker --quantization awq
就可以切换成 fastchat 的 vllm 模式:

# run_all_vllm_yi.sh# 清除全部 fastchat 服务
ps -ef | grep fastchat.serve | awk '{print$2}' | xargs kill -9
sleep 3rm -f *.log# 首先启动 controller :
nohup python3 -m fastchat.serve.controller --host 0.0.0.0 --port 21001 > controller.log 2>&1 &# 启动 openapi的 兼容服务 地址 8000
nohup python3 -m fastchat.serve.openai_api_server --controller-address http://127.0.0.1:21001 \--host 0.0.0.0 --port 8000 > api_server.log 2>&1 &# 启动 web ui
nohup python -m fastchat.serve.gradio_web_server --controller-address http://127.0.0.1:21001 \--host 0.0.0.0 --port 8000 > web_server.log 2>&1 &# 然后启动模型: 说明,必须是本地ip --load-8bit 本身已经是int4了
# nohup python3 -m fastchat.serve.model_worker  --model-names yi-34b \
#   --model-path ./Yi-34B-Chat-8bits --controller-address http://${IP_ADDR}:21001 \
#   --worker-address http://${IP_ADDR}:8080 --host 0.0.0.0 --port 8080 > model_worker.log 2>&1 &## 
nohup python3 -m fastchat.serve.vllm_worker --quantization awq --model-names yi-34b \--model-path ./Yi-34B-Chat-4bits --controller-address http://127.0.0.1:21001 \--worker-address http://127.0.0.1:8080 --host 0.0.0.0 --port 8080 > model_worker.log 2>&1 &

然后在测试下 token 效果:

python3 -m fastchat.serve.test_throughput --controller-address http://127.0.0.1:21001 --model-name yi-34b --n-thread 1throughput: 18.678158839922936 words/s.

5,总结

测试效果还可以,但是偶尔出现英文,需要说明强制转换成中文:

curl http://localhost:6006/v1/chat/completions   -H "Content-Type: application/json"   -d '{"model": "chatglm3-6b","messages": [{"role": "user", "content": "北京景点,使用中文回答"}],"temperature": 0.7}'

这篇关于使用autodl服务器,在A40显卡上运行, Yi-34B-Chat-int4模型,并使用vllm优化加速,显存占用42G,速度18 words/s的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/466675

相关文章

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

Java中String字符串使用避坑指南

《Java中String字符串使用避坑指南》Java中的String字符串是我们日常编程中用得最多的类之一,看似简单的String使用,却隐藏着不少“坑”,如果不注意,可能会导致性能问题、意外的错误容... 目录8个避坑点如下:1. 字符串的不可变性:每次修改都创建新对象2. 使用 == 比较字符串,陷阱满

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Linux使用nload监控网络流量的方法

《Linux使用nload监控网络流量的方法》Linux中的nload命令是一个用于实时监控网络流量的工具,它提供了传入和传出流量的可视化表示,帮助用户一目了然地了解网络活动,本文给大家介绍了Linu... 目录简介安装示例用法基础用法指定网络接口限制显示特定流量类型指定刷新率设置流量速率的显示单位监控多个

ElasticSearch+Kibana通过Docker部署到Linux服务器中操作方法

《ElasticSearch+Kibana通过Docker部署到Linux服务器中操作方法》本文介绍了Elasticsearch的基本概念,包括文档和字段、索引和映射,还详细描述了如何通过Docker... 目录1、ElasticSearch概念2、ElasticSearch、Kibana和IK分词器部署

部署Vue项目到服务器后404错误的原因及解决方案

《部署Vue项目到服务器后404错误的原因及解决方案》文章介绍了Vue项目部署步骤以及404错误的解决方案,部署步骤包括构建项目、上传文件、配置Web服务器、重启Nginx和访问域名,404错误通常是... 目录一、vue项目部署步骤二、404错误原因及解决方案错误场景原因分析解决方案一、Vue项目部署步骤

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本