斯坦福机器学习 Lecture2 (假设函数、参数、样本等等术语,还有批量梯度下降法、随机梯度下降法 SGD 以及它们的相关推导,还有正态方程)

本文主要是介绍斯坦福机器学习 Lecture2 (假设函数、参数、样本等等术语,还有批量梯度下降法、随机梯度下降法 SGD 以及它们的相关推导,还有正态方程),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

假设函数定义
假设函数,猜一个 x->y 的类型,比如 y = ax + b,随后监督学习的任务就是找到误差最低的 a 和 b 参数

在这里插入图片描述
有时候我们可以定义 x0 = 1,来让假设函数的整个表达式一致统一

在这里插入图片描述
如上图是机器学习中的一些术语

在这里插入图片描述
额外的符号,使用 (xi, yi) 表示第 i 个样本

n 表示特征数量 (在房屋价格预测问题中,属性/特征有两个:房子面积和卧室数量,因此这里 n = 2)

在这里插入图片描述
监督学习的过程就是选择合适的参数,来让假设函数的输出和样本输出相近(针对训练集)

在这里插入图片描述
房屋预测案例中的目标函数,最小化误差平方和

在这里插入图片描述
我们通常会在目标函数旁边放个 1/2,这是为了后边简化求导计算

在这里插入图片描述

我们通常使用梯度下降法来选取更加合适的 theta参数 来优化目标函数,如上图是梯度下降法中的 “baby step”

这里的 阿尔法 就是学习速率

在这里插入图片描述
如图,是对目标函数的求导 (由于对几个项的和求导,等于它们的导数和,所以这里我们先不 care 那个 sum(sigma) 符号)

在这里插入图片描述

如图,是对求导公式的后续转换

在这里插入图片描述
如图,这是对目标函数求导的最终公式的其中一项 (这里只对 theta_j 求导)

在这里插入图片描述

这也是最后统合得到的求导公式,对每一个样本 i 进行针对 theta_j 的求导

接下来要做的就是,重复 updating theta_j,直到目标函数收敛

在这里插入图片描述
由于我们的目标函数对于每个 theta_j 都是二次函数,所以这是一个凸函数,它是一个大碗,它只有一个全局最优

在这里插入图片描述
也可以用等高线图来表示

运用高中的一些数学知识,你会发现,最陡的防线和等高线(椭圆)的切线是90度

调试学习率的一些经验:
如果你发现目标函数在增加而不是减少,那通常说明学习率太大了(超调)
可以尝试 O1, O2, O4, O8 尝试不同的值

在这里插入图片描述

另一种可视化学习过程的方式是,看到曲线(假设函数)一点点变化

刚刚提到的机器学习方法中,梯度下降需要用到训练集中所有的样本,来计算梯度(所以也叫批量梯度下降法)。在训练集很大的情况下,这会变得昂贵,因此我们需要做些改变

在这里插入图片描述
另一种快得多的方式是随机梯度下降法,它遍历每一个样本 i,随后针对这单个样本对所有的 theta_j 做梯度下降

(原先的方法中,我们每做一个 tiny step 都需要扫描一次所有的样本;而 SGD 中,我们每走一个 step 只需要扫描一个样本,因此快得多)

一个更直观的解释 SGD 的方式是,一开始我的 theta 参数是随机的,然后我看到了第一个样本 x1,随后我针对这个 x1 修改的我 theta,接着我看到了 x2,我再针对 x2 修改我的 theta。在等高线图中,你可能会看到,参数并没有沿着 90 度的方向下降,而是以一种更曲折的方式下降

SGD 通常不会收敛,它会振荡

还有一种下降方法是“小批量梯度下降法”,一次遍历100个样本

还有一种实践中的方法(一点点减少学习速率)

线性回归没有局部最优(在它的目标函数是误差平方和时),只有全局最优。所以,实际上你可以使用一个矩阵去表示它的参数,求cost function(目标函数)对于 参数矩阵的求导,随后让导数 = 0,求这个位置上的导数矩阵,即可直接得到全局最优解。这也叫做正态方程,这个方法仅适用于线性回归

在这里插入图片描述
根据吴恩达的推导,正态方程,也就是最终最优的 theta 可以通过这么一个公式求出来

如果发现 X 不可逆,那么通常意味着有多余的 features,你有某些 features 是线性相关的,你可以使用伪逆,或者找出哪些特征是线性相关的

关于怎么选择学习率:这非常依赖经验,通常我们尝试许多个不同的值,然后选择一个

这篇关于斯坦福机器学习 Lecture2 (假设函数、参数、样本等等术语,还有批量梯度下降法、随机梯度下降法 SGD 以及它们的相关推导,还有正态方程)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/394793

相关文章

Python itertools中accumulate函数用法及使用运用详细讲解

《Pythonitertools中accumulate函数用法及使用运用详细讲解》:本文主要介绍Python的itertools库中的accumulate函数,该函数可以计算累积和或通过指定函数... 目录1.1前言:1.2定义:1.3衍生用法:1.3Leetcode的实际运用:总结 1.1前言:本文将详

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

轻松上手MYSQL之JSON函数实现高效数据查询与操作

《轻松上手MYSQL之JSON函数实现高效数据查询与操作》:本文主要介绍轻松上手MYSQL之JSON函数实现高效数据查询与操作的相关资料,MySQL提供了多个JSON函数,用于处理和查询JSON数... 目录一、jsON_EXTRACT 提取指定数据二、JSON_UNQUOTE 取消双引号三、JSON_KE

MySQL数据库函数之JSON_EXTRACT示例代码

《MySQL数据库函数之JSON_EXTRACT示例代码》:本文主要介绍MySQL数据库函数之JSON_EXTRACT的相关资料,JSON_EXTRACT()函数用于从JSON文档中提取值,支持对... 目录前言基本语法路径表达式示例示例 1: 提取简单值示例 2: 提取嵌套值示例 3: 提取数组中的值注意

Java通过反射获取方法参数名的方式小结

《Java通过反射获取方法参数名的方式小结》这篇文章主要为大家详细介绍了Java如何通过反射获取方法参数名的方式,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1、前言2、解决方式方式2.1: 添加编译参数配置 -parameters方式2.2: 使用Spring的内部工具类 -

使用Python实现批量分割PDF文件

《使用Python实现批量分割PDF文件》这篇文章主要为大家详细介绍了如何使用Python进行批量分割PDF文件功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、架构设计二、代码实现三、批量分割PDF文件四、总结本文将介绍如何使用python进js行批量分割PDF文件的方法

Java function函数式接口的使用方法与实例

《Javafunction函数式接口的使用方法与实例》:本文主要介绍Javafunction函数式接口的使用方法与实例,函数式接口如一支未完成的诗篇,用Lambda表达式作韵脚,将代码的机械美感... 目录引言-当代码遇见诗性一、函数式接口的生物学解构1.1 函数式接口的基因密码1.2 六大核心接口的形态学

Redis的Zset类型及相关命令详细讲解

《Redis的Zset类型及相关命令详细讲解》:本文主要介绍Redis的Zset类型及相关命令的相关资料,有序集合Zset是一种Redis数据结构,它类似于集合Set,但每个元素都有一个关联的分数... 目录Zset简介ZADDZCARDZCOUNTZRANGEZREVRANGEZRANGEBYSCOREZ

Python调用另一个py文件并传递参数常见的方法及其应用场景

《Python调用另一个py文件并传递参数常见的方法及其应用场景》:本文主要介绍在Python中调用另一个py文件并传递参数的几种常见方法,包括使用import语句、exec函数、subproce... 目录前言1. 使用import语句1.1 基本用法1.2 导入特定函数1.3 处理文件路径2. 使用ex

Linux使用fdisk进行磁盘的相关操作

《Linux使用fdisk进行磁盘的相关操作》fdisk命令是Linux中用于管理磁盘分区的强大文本实用程序,这篇文章主要为大家详细介绍了如何使用fdisk进行磁盘的相关操作,需要的可以了解下... 目录简介基本语法示例用法列出所有分区查看指定磁盘的区分管理指定的磁盘进入交互式模式创建一个新的分区删除一个存