算法训练 | 动态规划Part5 | 518.零钱兑换 II、377.组合总和 Ⅳ 、70.爬楼梯 (进阶)

本文主要是介绍算法训练 | 动态规划Part5 | 518.零钱兑换 II、377.组合总和 Ⅳ 、70.爬楼梯 (进阶),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

518. 零钱兑换 II

动态规划法

377. 组合总和 Ⅳ

动态规划法

70. 爬楼梯 (进阶)

动态规划法


518. 零钱兑换 II

  • 题目链接:518. 零钱兑换 II - 力扣(LeetCode)

  • 文章讲解:代码随想录

动态规划法
  • 完全背包:01背包内嵌的循环是从大到小遍历,为了保证每个物品仅被添加一次。而完全背包的物品是可以添加多次的,所以要从小到大去遍历

  • 解题思路

      但本题和纯完全背包不一样,纯完全背包是凑成背包最大价值是多少,而本题是要求凑成总金额的物品组合个数!注意题目描述中是凑成总金额的硬币组合数,组合不强调元素之间的顺序,排列强调元素之间的顺序。

  • 解题步骤

    • 确定dp数组以及下标的含义:dp[j]凑成总金额j的货币组合数为dp[j]

    • dp[j] 就是所有的dp[j - coins[i]](考虑coins[i]的情况)相加。所以递推公式:dp[j] += dp[j - coins[i]];

    • dp数组如何初始化:首先dp[0]一定要为1,dp[0] = 1是 递归公式的基础。如果dp[0] = 0 的话,后面所有推导出来的值都是0了。

    • 确定遍历顺序:本题中我们是外层for循环遍历物品(钱币),内层for遍历背包(金钱总额)。这种遍历顺序中dp[j]里计算的是组合数。如果把两个for交换顺序,此时dp[j]里算出来的就是排列数。

    • 举例推导dp数组:

  • 代码一:动态规划

// 时间复杂度: O(mn),其中 m 是amount,n 是 coins 的长度
// 空间复杂度: O(m)
class Solution {
public:int change(int amount, vector<int>& coins) {vector<int> dp(amount + 1, 0);dp[0] = 1;for (int i = 0; i < coins.size(); i++) { // 遍历物品for (int j = coins[i]; j <= amount; j++) { // 遍历背包dp[j] += dp[j - coins[i]];}}return dp[amount];}
};

377. 组合总和 Ⅳ

  • 题目链接:377. 组合总和 Ⅳ - 力扣(LeetCode)

  • 文章讲解:代码随想录

动态规划法
  • 解题思路

    • 本题题目描述说是求组合,但又说是可以元素相同顺序不同的组合算两个组合,其实就是求排列!

  • 解题步骤

    • 确定dp数组以及下标的含义:dp[i]: 凑成目标正整数为i的排列个数为dp[i]

    • 确定递推公式:dp[i](考虑nums[j])可以由 dp[i - nums[j]](不考虑nums[j]) 推导出来。因为只要得到nums[j],排列个数dp[i - nums[j]],就是dp[i]的一部分。求装满背包有几种方法,递推公式一般都是dp[i] += dp[i - nums[j]];

    • 个数可以不限使用,说明这是一个完全背包。得到的集合是排列,说明需要考虑元素之间的顺序。所以本题遍历顺序最终遍历顺序:target(背包)放在外循环,将nums(物品)放在内循环,内循环从前到后遍历。

    • 举例来推导dp数组:

  • 代码一:动态规划

// 时间复杂度: O(target * n),其中 n 为 nums 的长度
// 空间复杂度: O(target)
class Solution {
public:int combinationSum4(vector<int>& nums, int target) {vector<int> dp(target + 1, 0);dp[0] = 1;for (int i = 0; i <= target; i++) { // 遍历背包for (int j = 0; j < nums.size(); j++) { // 遍历物品if (i - nums[j] >= 0 && dp[i] < INT_MAX - dp[i - nums[j]]) {dp[i] += dp[i - nums[j]];}}}return dp[target];}
};

70. 爬楼梯 (进阶)

  • 题目链接:57. 爬楼梯(第八期模拟笔试)

  • 文章讲解:代码随想录

动态规划法
  • 解题思路

      一步一个台阶,两个台阶,三个台阶,.......,直到 m个台阶。问有多少种不同的方法可以爬到楼顶呢?这又有难度了,这其实是一个完全背包问题。1阶,2阶,.... m阶就是物品,楼顶就是背包。每一阶可以重复使用,例如跳了1阶,还可以继续跳1阶。问跳到楼顶有几种方法其实就是问装满背包有几种方法。

  • 解题步骤

    • 确定dp数组以及下标的含义:dp[i]:爬到有i个台阶的楼顶,有dp[i]种方法。

    • dp数组如何初始化:既然递归公式是 dp[i] += dp[i - j],那么dp[0] 一定为1,dp[0]是递归中一切数值的基础所在,如果dp[0]是0的话,其他数值都是0了。下标非0的dp[i]初始化为0,因为dp[i]是靠dp[i-j]累计上来的,dp[i]本身为0这样才不会影响结果。

    • 确定遍历顺序:这是背包里求排列问题,即:1、2 步 和 2、1 步都是上三个台阶,但是这两种方法不一样!所以需将target放在外循环,将nums放在内循环。每一步可以走多次,这是完全背包,内循环需要从前向后遍历。

  • 代码一:动态规划

// 时间复杂度: O(n * m)
// 空间复杂度: O(n)
#include <iostream>
#include <vector>
using namespace std;
int main() {int n, m;while (cin >> n >> m) {vector<int> dp(n + 1, 0);dp[0] = 1;for (int i = 1; i <= n; i++) { // 遍历背包for (int j = 1; j <= m; j++) { // 遍历物品if (i - j >= 0) dp[i] += dp[i - j];}}cout << dp[n] << endl;}
}

这篇关于算法训练 | 动态规划Part5 | 518.零钱兑换 II、377.组合总和 Ⅳ 、70.爬楼梯 (进阶)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1075786

相关文章

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程

Android 悬浮窗开发示例((动态权限请求 | 前台服务和通知 | 悬浮窗创建 )

《Android悬浮窗开发示例((动态权限请求|前台服务和通知|悬浮窗创建)》本文介绍了Android悬浮窗的实现效果,包括动态权限请求、前台服务和通知的使用,悬浮窗权限需要动态申请并引导... 目录一、悬浮窗 动态权限请求1、动态请求权限2、悬浮窗权限说明3、检查动态权限4、申请动态权限5、权限设置完毕后

Java使用POI-TL和JFreeChart动态生成Word报告

《Java使用POI-TL和JFreeChart动态生成Word报告》本文介绍了使用POI-TL和JFreeChart生成包含动态数据和图表的Word报告的方法,并分享了实际开发中的踩坑经验,通过代码... 目录前言一、需求背景二、方案分析三、 POI-TL + JFreeChart 实现3.1 Maven

Java导出Excel动态表头的示例详解

《Java导出Excel动态表头的示例详解》这篇文章主要为大家详细介绍了Java导出Excel动态表头的相关知识,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录前言一、效果展示二、代码实现1.固定头实体类2.动态头实现3.导出动态头前言本文只记录大致思路以及做法,代码不进

vue基于ElementUI动态设置表格高度的3种方法

《vue基于ElementUI动态设置表格高度的3种方法》ElementUI+vue动态设置表格高度的几种方法,抛砖引玉,还有其它方法动态设置表格高度,大家可以开动脑筋... 方法一、css + js的形式这个方法需要在表格外层设置一个div,原理是将表格的高度设置成外层div的高度,所以外层的div需要

SpringBoot实现动态插拔的AOP的完整案例

《SpringBoot实现动态插拔的AOP的完整案例》在现代软件开发中,面向切面编程(AOP)是一种非常重要的技术,能够有效实现日志记录、安全控制、性能监控等横切关注点的分离,在传统的AOP实现中,切... 目录引言一、AOP 概述1.1 什么是 AOP1.2 AOP 的典型应用场景1.3 为什么需要动态插

Python进阶之Excel基本操作介绍

《Python进阶之Excel基本操作介绍》在现实中,很多工作都需要与数据打交道,Excel作为常用的数据处理工具,一直备受人们的青睐,本文主要为大家介绍了一些Python中Excel的基本操作,希望... 目录概述写入使用 xlwt使用 XlsxWriter读取修改概述在现实中,很多工作都需要与数据打交

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

VUE动态绑定class类的三种常用方式及适用场景详解

《VUE动态绑定class类的三种常用方式及适用场景详解》文章介绍了在实际开发中动态绑定class的三种常见情况及其解决方案,包括根据不同的返回值渲染不同的class样式、给模块添加基础样式以及根据设... 目录前言1.动态选择class样式(对象添加:情景一)2.动态添加一个class样式(字符串添加:情

SpringCloud配置动态更新原理解析

《SpringCloud配置动态更新原理解析》在微服务架构的浩瀚星海中,服务配置的动态更新如同魔法一般,能够让应用在不重启的情况下,实时响应配置的变更,SpringCloud作为微服务架构中的佼佼者,... 目录一、SpringBoot、Cloud配置的读取二、SpringCloud配置动态刷新三、更新@R