一、pipeline 可以使用pipeline快速实现文本摘要 from transformers import pipelinesummarizer = pipeline(task="summarization", model='t5-small')text = """summarize: (CNN)For the second time during his papacy, Pope Fr
scient scient一个用python实现科学计算相关算法的包,包括自然语言、图像、神经网络、优化算法、机器学习、图计算等模块。 scient源码和编译安装包可以在Python package index获取。 The source code and binary installers for the latest released version are available at t
近年来,在大规模预训练语言模型上,各大公司的军备竞赛卷得十分激烈! 本文我们介绍Google推出的大一统模型——T5,同样是数据和实验多得让你瞠目结舌的论文,没错,就是在炫富,你有钱你也可以烧啊!(不过相比后来出现的GPT-3还是小巫见大巫) T5论文:Exploring the Limits of Transfer Learning with a Unified Text-to-Te
【mT5中的激活函数】GLU Variants Improve Transformer 论文信息 阅读评价 Abstract Introduction Gated Linear Units (GLU) and Variants Experiments on Text-to-Text Transfer Transformer (T5) Conclusion 论文信息
T5 paper: 2019.10 Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer Task: Everything Prompt: 前缀式人工prompt Model: Encoder-Decoder Take Away: 加入前缀Prompt,所有NLP任务都可
T5 paper: 2019.10 Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer Task: Everything Prompt: 前缀式人工prompt Model: Encoder-Decoder Take Away: 加入前缀Prompt,所有NLP任务都可以转