FLAN-T5模型的文本摘要任务

2024-06-15 18:28
文章标签 模型 任务 文本 摘要 t5 flan

本文主要是介绍FLAN-T5模型的文本摘要任务,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Text Summarization with FLAN-T5 — ROCm Blogs (amd.com)

在这篇博客中,我们展示了如何使用HuggingFace在AMD GPU + ROCm系统上对语言模型FLAN-T5进行微调,以执行文本摘要任务。

介绍

FLAN-T5是谷歌发布的一个开源大型语言模型,相较于之前的T5模型有所增强。它是一个已经在指令数据集上进行预训练的编码器-解码器模型,这意味着该模型具备执行诸如摘要、分类和翻译等特定任务的能力。有关FLAN-T5的更多详情,请参考[原始论文](https://arxiv.org/pdf/2210.11416.pdf)。要查看模型相对于之前的T5模型的完整改进细节,请参考[这个模型卡片](https://huggingface.co/docs/transformers/model_doc/t5v1.1)。

先决条件

• [ROCm](ROCm quick start installation guide for Linux — ROCm installation (Linux))
• [PyTorch](Installing PyTorch for ROCm — ROCm installation (Linux))
• [Linux 操作系统](System requirements (Linux) — ROCm installation (Linux))
• [一块AMD GPU](System requirements (Linux) — ROCm installation (Linux))
确保系统能识别出你的GPU:

! rocm-smi --showproductname
================= ROCm System Management Interface ================
========================= Product Info ============================
GPU[0] : Card series: Instinct MI210
GPU[0] : Card model: 0x0c34
GPU[0] : Card vendor: Advanced Micro Devices, Inc. [AMD/ATI]
GPU[0] : Card SKU: D67301
===================================================================
===================== End of ROCm SMI Log =========================

我们来检查是否安装了正确版本的ROCm。

!apt show rocm-libs -a
Package: rocm-libs
Version: 5.7.0.50700-63~22.04
Priority: optional
Section: devel
Maintainer: ROCm Libs Support <rocm-libs.support@amd.com>
Installed-Size: 13.3 kBA
Depends: hipblas (= 1.1.0.50700-63~22.04), hipblaslt (= 0.3.0.50700-63~22.04), hipfft (= 1.0.12.50700-63~22.04), hipsolver (= 1.8.1.50700-63~22.04), hipsparse (= 2.3.8.50700-63~22.04), miopen-hip (= 2.20.0.50700-63~22.04), rccl (= 2.17.1.50700-63~22.04), rocalution (= 2.1.11.50700-63~22.04), rocblas (= 3.1.0.50700-63~22.04), rocfft (= 1.0.23.50700-63~22.04), rocrand (= 2.10.17.50700-63~22.04), rocsolver (= 3.23.0.50700-63~22.04), rocsparse (= 2.5.4.50700-63~22.04), rocm-core (= 5.7.0.50700-63~22.04), hipblas-dev (= 1.1.0.50700-63~22.04), hipblaslt-dev (= 0.3.0.50700-63~22.04), hipcub-dev (= 2.13.1.50700-63~22.04), hipfft-dev (= 1.0.12.50700-63~22.04), hipsolver-dev (= 1.8.1.50700-63~22.04), hipsparse-dev (= 2.3.8.50700-63~22.04), miopen-hip-dev (= 2.20.0.50700-63~22.04), rccl-dev (= 2.17.1.50700-63~22.04), rocalution-dev (= 2.1.11.50700-63~22.04), rocblas-dev (= 3.1.0.50700-63~22.04), rocfft-dev (= 1.0.23.50700-63~22.04), rocprim-dev (= 2.13.1.50700-63~22.04), rocrand-dev (= 2.10.17.50700-63~22.04), rocsolver-dev (= 3.23.0.50700-63~22.04), rocsparse-dev (= 2.5.4.50700-63~22.04), rocthrust-dev (= 2.18.0.50700-63~22.04), rocwmma-dev (= 1.2.0.50700-63~22.04)
Homepage: https://github.com/RadeonOpenCompute/ROCm
Download-Size: 1012 B
APT-Manual-Installed: yes
APT-Sources: http://repo.radeon.com/rocm/apt/5.7 jammy/main amd64 Packages
Description: Radeon Open Compute (ROCm) Runtime software stack

确保PyTorch也识别出了GPU:

import torch
print(f"number of GPUs: {torch.cuda.device_count()}")
print([torch.cuda.get_device_name(i) for i in range(torch.cuda.device_count())])
number of GPUs: 1
['AMD Radeon Graphics']

在你开始之前,确保你已经安装了所有必需的库:

!pip install -q transformers accelerate einops datasets
!pip install --upgrade SQLAlchemy==1.4.46
!pip install -q alembic==1.4.1 numpy==1.23.4 grpcio-status==1.33.2 protobuf==3.19.6 
WARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv
警告:以'root'用户身份运行pip可能会导致权限损坏和与系统包管理器的行为冲突。建议使用虚拟环境: https://pip.pypa.io/warnings/venv

接下来导入将在本博客中使用的模块:

import time 
import torch
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer,Seq2SeqTrainingArguments, Seq2SeqTrainer, DataCollatorForSeq2Seq

加载模型

我们来加载模型及其分词器。FLAN-T5有多个不同大小的变体,从`small`到`xxl`。我们首先会使用`xxl`变体运行一些推论,并展示如何使用`small`变体在文本摘要任务上对Flan-T5进行微调。

start_time = time.time()
model_checkpoint = "google/flan-t5-xxl"
model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint)
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
print(f"Loaded in {time.time() - start_time: .2f} seconds")
print(model)
Loading checkpoint shards: 100%|██████████| 5/5 [01:23<00:00, 16.69s/it]
Loaded in  85.46 seconds
T5ForConditionalGeneration((shared): Embedding(32128, 4096)(encoder): T5Stack((embed_tokens): Embedding(32128, 4096)(block): ModuleList((0): T5Block((layer): ModuleList((0): T5LayerSelfAttention((SelfAttention): T5Attention((q): Linear(in_features=4096, out_features=4096, bias=False)(k): Linear(in_features=4096, out_features=4096, bias=False)(v): Linear(in_features=4096, out_features=4096, bias=False)(o): Linear(in_features=4096, out_features=4096, bias=False)(relative_attention_bias): Embedding(32, 64))(layer_norm): FusedRMSNorm(torch.Size([4096]), eps=1e-06, elementwise_affine=True)(dropout): Dropout(p=0.1, inplace=False))(1): T5LayerFF((DenseReluDense): T5DenseGatedActDense((wi_0): Linear(in_features=4096, out_features=10240, bias=False)(wi_1): Linear(in_features=4096, out_features=10240, bias=False)(wo): Linear(in_features=10240, out_features=4096, bias=False)(dropout): Dropout(p=0.1, inplace=False)(act): NewGELUActivation())(layer_norm): FusedRMSNorm(torch.Size([4096]), eps=1e-06, elementwise_affine=True)(dropout): Dropout(p=0.1, inplace=False))))(1-23): 23 x T5Block((layer): ModuleList((0): T5LayerSelfAttention((SelfAttention): T5Attention((q): Linear(in_features=4096, out_features=4096, bias=False)(k): Linear(in_features=4096, out_features=4096, bias=False)(v): Linear(in_features=4096, out_features=4096, bias=False)(o): Linear(in_features=4096, out_features=4096, bias=False))(layer_norm): FusedRMSNorm(torch.Size([4096]), eps=1e-06, elementwise_affine=True)(dropout): Dropout(p=0.1, inplace=False))(1): T5LayerFF((DenseReluDense): T5DenseGatedActDense((wi_0): Linear(in_features=4096, out_features=10240, bias=False)(wi_1): Linear(in_features=4096, out_features=10240, bias=False)(wo): Linear(in_features=10240, out_features=4096, bias=False)(dropout): Dropout(p=0.1, inplace=False)(act): NewGELUActivation())(layer_norm): FusedRMSNorm(torch.Size([4096]), eps=1e-06, elementwise_affine=True)(dropout): Dropout(p=0.1, inplace=False)))))(final_layer_norm): FusedRMSNorm(torch.Size([4096]), eps=1e-06, elementwise_affine=True)(dropout): Dropout(p=0.1, inplace=False))(decoder): T5Stack((embed_tokens): Embedding(32128, 4096)(block): ModuleList((0): T5Block((layer): ModuleList((0): T5LayerSelfAttention((SelfAttention): T5Attention((q): Linear(in_features=4096, out_features=4096, bias=False)(k): Linear(in_features=4096, out_features=4096, bias=False)(v): Linear(in_features=4096, out_features=4096, bias=False)(o): Linear(in_features=4096, out_features=4096, bias=False)(relative_attention_bias): Embedding(32, 64))(layer_norm): FusedRMSNorm(torch.Size([4096]), eps=1e-06, elementwise_affine=True)(dropout): Dropout(p=0.1, inplace=False))(1): T5LayerCrossAttention((EncDecAttention): T5Attention((q): Linear(in_features=4096, out_features=4096, bias=False)(k): Linear(in_features=4096, out_features=4096, bias=False)(v): Linear(in_features=4096, out_features=4096, bias=False)(o): Linear(in_features=4096, out_features=4096, bias=False))(layer_norm): FusedRMSNorm(torch.Size([4096]), eps=1e-06, elementwise_affine=True)(dropout): Dropout(p=0.1, inplace=False))(2): T5LayerFF((DenseReluDense): T5DenseGatedActDense((wi_0): Linear(in_features=4096, out_features=10240, bias=False)(wi_1): Linear(in_features=4096, out_features=10240, bias=False)(wo): Linear(in_features=10240, out_features=4096, bias=False)(dropout): Dropout(p=0.1, inplace=False)(act): NewGELUActivation())(layer_norm): FusedRMSNorm(torch.Size([4096]), eps=1e-06, elementwise_affine=True)(dropout): Dropout(p=0.1, inplace=False))))(1-23): 23 x T5Block((layer): ModuleList((0): T5LayerSelfAttention((SelfAttention): T5Attention((q): Linear(in_features=4096, out_features=4096, bias=False)(k): Linear(in_features=4096, out_features=4096, bias=False)(v): Linear(in_features=4096, out_features=4096, bias=False)(o): Linear(in_features=4096, out_features=4096, bias=False))(layer_norm): FusedRMSNorm(torch.Size([4096]), eps=1e-06, elementwise_affine=True)(dropout): Dropout(p=0.1, inplace=False))(1): T5LayerCrossAttention((EncDecAttention): T5Attention((q): Linear(in_features=4096, out_features=4096, bias=False)(k): Linear(in_features=4096, out_features=4096, bias=False)(v): Linear(in_features=4096, out_features=4096, bias=False)(o): Linear(in_features=4096, out_features=4096, bias=False))(layer_norm): FusedRMSNorm(torch.Size([4096]), eps=1e-06, elementwise_affine=True)(dropout): Dropout(p=0.1, inplace=False))(2): T5LayerFF((DenseReluDense): T5DenseGatedActDense((wi_0): Linear(in_features=4096, out_features=10240, bias=False)(wi_1): Linear(in_features=4096, out_features=10240, bias=False)(wo): Linear(in_features=10240, out_features=4096, bias=False)(dropout): Dropout(p=0.1, inplace=False)(act): NewGELUActivation())(layer_norm): FusedRMSNorm(torch.Size([4096]), eps=1e-06, elementwise_affine=True)(dropout): Dropout(p=0.1, inplace=False)))))(final_layer_norm): FusedRMSNorm(torch.Size([4096]), eps=1e-06, elementwise_affine=True)(dropout): Dropout(p=0.1, inplace=False))(lm_head): Linear(in_features=4096, out_features=32128, bias=False)
)

执行推理

值得注意的是,我们可以直接在没有进行微调的情况下使用FLAN-T5模型。可以先看一些简单的推理。

例如,我们可以让模型回答一个简单的问题:

inputs = tokenizer("How to make milk coffee", return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=100)
print(tokenizer.batch_decode(outputs, skip_special_tokens=True))
['Pour a cup of coffee into a mug. Add a tablespoon of milk. Add a pinch of sugar.']

或者我们可以要求它总结一段文字:

text = """ summarize: 
Amy: Hey Mark, have you heard about the new movie coming out this weekend?
Mark: Oh, no, I haven't. What's it called?
Amy: It's called "Stellar Odyssey." It's a sci-fi thriller with amazing special effects.
Mark: Sounds interesting. Who's in it?
Amy: The main lead is Emily Stone, and she's fantastic in the trailer. The plot revolves around a journey to a distant galaxy.
Mark: Nice! I'm definitely up for a good sci-fi flick. Want to catch it together on Saturday?
Amy: Sure, that sounds great! Let's meet at the theater around 7 pm.
"""
inputs = tokenizer(text, return_tensors="pt").input_ids
outputs = model.generate(inputs, max_new_tokens=100, do_sample=False)
tokenizer.decode(outputs[0], skip_special_tokens=True)
'Amy and Mark are going to see "Stellar Odyssey" on Saturday at 7 pm.'

微调

在本节中,我们将对模型进行微调以进行总结任务。我们将使用来自这个教程的代码作为我们的指导。正如提到的,我们将使用模型的`small`变体来进行微调:

start_time = time.time()
model_checkpoint = "google/flan-t5-small"
model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint)
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
print(f"Loaded in {time.time() - start_time: .2f} seconds")

加载数据集

我们的示例数据集是samsum数据集,包含约16K条类似Messenger的对话和总结。

from datasets import load_dataset
from evaluate import loadraw_datasets = load_dataset("samsum")

以下是我们数据集的一个样例:

print('Dialogue: ')
print(raw_datasets['train']['dialogue'][100])
print() 
print('Summary: ', raw_datasets['train']['summary'][100])
Dialogue: 
Gabby: How is you? Settling into the new house OK?
Sandra: Good. The kids and the rest of the menagerie are doing fine. The dogs absolutely love the new garden. Plenty of room to dig and run around.
Gabby: What about the hubby?
Sandra: Well, apart from being his usual grumpy self I guess he's doing OK.
Gabby: :-D yeah sounds about right for Jim.
Sandra: He's a man of few words. No surprises there. Give him a backyard shed and that's the last you'll see of him for months.
Gabby: LOL that describes most men I know.
Sandra: Ain't that the truth! 
Gabby: Sure is. :-) My one might as well move into the garage. Always tinkering and building something in there.
Sandra: Ever wondered what he's doing in there?
Gabby: All the time. But he keeps the place locked.
Sandra: Prolly building a portable teleporter or something. ;-)
Gabby: Or a time machine... LOL
Sandra: Or a new greatly improved Rabbit :-P
Gabby: I wish... Lmfao!Summary:  Sandra is setting into the new house; her family is happy with it. Then Sandra and Gabby discuss the nature of their men and laugh about their habit of spending time in the garage or a shed.

设置度量标准

接下来,我们将加载此任务的度量标准。通常,在总结任务中,我们使用ROUGE(回想导向的内容获取评估的助理)度量标准,这些标准量化原始文件与总结之间的相似度。更具体地说,这些度量标准测量系统总结和参考总结之间n-gram(n个连续词的序列)的重叠。有关此度量标准的更多细节,请参阅链接。

from evaluate import load
metric = load("rouge")
print(metric)
EvaluationModule(name: "rouge", module_type: "metric", features: [{'predictions': Value(dtype='string', id='sequence'), 'references': Sequence(feature=Value(dtype='string', id='sequence'), length=-1, id=None)}, {'predictions': Value(dtype='string', id='sequence'), 'references': Value(dtype='string', id='sequence')}], usage: """
Calculates average rouge scores for a list of hypotheses and references
Args:predictions: list of predictions to score. Each predictionshould be a string with tokens separated by spaces.references: list of reference for each prediction. Eachreference should be a string with tokens separated by spaces.rouge_types: A list of rouge types to calculate.Valid names:`"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring,`"rougeL"`: Longest common subsequence based scoring.`"rougeLsum"`: rougeLsum splits text using `"
"`.See details in https://github.com/huggingface/datasets/issues/617use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.use_aggregator: Return aggregates if this is set to True
Returns:rouge1: rouge_1 (f1),rouge2: rouge_2 (f1),rougeL: rouge_l (f1),rougeLsum: rouge_lsum (f1)
Examples:>>> rouge = evaluate.load('rouge')>>> predictions = ["hello there", "general kenobi"]>>> references = ["hello there", "general kenobi"]>>> results = rouge.compute(predictions=predictions, references=references)>>> print(results){'rouge1': 1.0, 'rouge2': 1.0, 'rougeL': 1.0, 'rougeLsum': 1.0}
""", stored examples: 0)

我们需要创建一个函数来计算ROUGE度量标准:

import nltk
nltk.download('punkt')
import numpy as npdef compute_metrics(eval_pred):predictions, labels = eval_preddecoded_preds = tokenizer.batch_decode(predictions, skip_special_tokens=True)# We need to replace -100 in the labels since we can't decode it labels = np.where(labels != -100, labels, tokenizer.pad_token_id)decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)# Add new line after each sentence for rogue metricsdecoded_preds = ["\n".join(nltk.sent_tokenize(pred.strip())) for pred in decoded_preds]decoded_labels = ["\n".join(nltk.sent_tokenize(label.strip())) for label in decoded_labels]# compute metrics result = metric.compute(predictions=decoded_preds, references=decoded_labels, use_stemmer=True, use_aggregator=True)# Extract a few resultsresult = {key: value * 100 for key, value in result.items()}# compute the average length of the generated textprediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in predictions]result["gen_len"] = np.mean(prediction_lens)return {k: round(v, 4) for k, v in result.items()}

处理数据

让我们创建一个函数来处理数据,这包括对每个样本文档的输入和输出进行标记化。我们还设置了长度阈值来截断输入和输出。

prefix = "summarize: "max_input_length = 1024
max_target_length = 128def preprocess_function(examples):inputs = [prefix + doc for doc in examples["dialogue"]]model_inputs = tokenizer(inputs, max_length=max_input_length, truncation=True)# Setup the tokenizer for targetslabels = tokenizer(text_target=examples["dialogue"], max_length=max_target_length, truncation=True)model_inputs["labels"] = labels["input_ids"]return model_inputstokenized_datasets = raw_datasets.map(preprocess_function, batched=True)

训练模型

要训练我们的模型,我们需要几样东西:

1. 数据收集器,在收集期间根据批次中最长的长度动态填充句子,而不是将整个数据集填充到最大长度。
2. 一个`TrainingArguments`类,用于自定义模型的训练方式。
3. Trainer类,这是一个用于在PyTorch中训练的API。

首先我们创建数据收集器:

data_collator = DataCollatorForSeq2Seq(tokenizer, model=model)

接下来,让我们设置我们的`TrainingArgument`类:

batch_size = 16
model_name = model_checkpoint.split("/")[-1]
args = Seq2SeqTrainingArguments(f"{model_name}-finetuned-samsum",evaluation_strategy = "epoch",learning_rate=2e-5,per_device_train_batch_size=batch_size,per_device_eval_batch_size=batch_size,weight_decay=0.01,save_total_limit=3,num_train_epochs=2,predict_with_generate=True,fp16=False,push_to_hub=False,
)

注:我们发现,由于模型是在Google TPU上预训练的,而不是在GPU上,我们需要设置`fp16=False`或`bf16=True`。否则我们会遇到溢出问题,从而导致我们的损失值出现NaN值。这可能是由于半精度浮点格式`fp16`和`bf16`之间的差异。

最后我们需要设置一个训练器API

trainer = Seq2SeqTrainer(model,args,train_dataset=tokenized_datasets["train"],eval_dataset=tokenized_datasets["validation"],data_collator=data_collator,tokenizer=tokenizer,compute_metrics=compute_metrics
)

有了这些,我们就可以训练我们的模型了!

trainer.train()
 [1842/1842 05:37, Epoch 2/2]
Epoch Training Loss Validation Loss Rouge1  Rouge2  Rougel  Rougelsum Gen Len
1 1.865700  1.693366  43.551000 20.046200 36.170400 40.096200 16.926700
2 1.816700  1.685862  43.506000 19.934800 36.278300 40.156700 16.837400

运行上述训练器应该会生成一个本地文件夹`flan-t5-small-finetuned-samsum`来存储我们的模型检查点。

推理

一旦我们有了微调模型,我们就可以使用它进行推理!让我们先重新加载来自我们本地检查点的分词器和经过微调的模型。

model = AutoModelForSeq2SeqLM.from_pretrained("flan-t5-small-finetuned-samsum/checkpoint-1500")
tokenizer = AutoTokenizer.from_pretrained("flan-t5-small-finetuned-samsum/checkpoint-1500")

接下来,我们用一些文本来总结。重要的是要像下面这样加上前缀:

text = """ summarize: 
Hannah: Hey, Mark, have you decided on your New Year's resolution yet?
Mark: Yeah, I'm thinking of finally hitting the gym regularly. What about you?
Hannah: I'm planning to read more books this year, at least one per month.
Mark: That sounds like a great goal. Any particular genre you're interested in?
Hannah: I want to explore more classic literature. Maybe start with some Dickens or Austen.
Mark: Nice choice. I'll hold you to it. We can discuss our progress over coffee.
Hannah: Deal! Accountability partners it is.
"""

最后,我们编码输入并生成摘要

inputs = tokenizer(text, return_tensors="pt").input_ids
outputs = model.generate(inputs, max_new_tokens=100, do_sample=False)
tokenizer.decode(outputs[0], skip_special_tokens=True)
'Hannah is planning to read more books this year. Mark will hold Hannah to it.'

这篇关于FLAN-T5模型的文本摘要任务的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1064226

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

AI Toolkit + H100 GPU,一小时内微调最新热门文生图模型 FLUX

上个月,FLUX 席卷了互联网,这并非没有原因。他们声称优于 DALLE 3、Ideogram 和 Stable Diffusion 3 等模型,而这一点已被证明是有依据的。随着越来越多的流行图像生成工具(如 Stable Diffusion Web UI Forge 和 ComyUI)开始支持这些模型,FLUX 在 Stable Diffusion 领域的扩展将会持续下去。 自 FLU

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者

线性因子模型 - 独立分量分析(ICA)篇

序言 线性因子模型是数据分析与机器学习中的一类重要模型,它们通过引入潜变量( latent variables \text{latent variables} latent variables)来更好地表征数据。其中,独立分量分析( ICA \text{ICA} ICA)作为线性因子模型的一种,以其独特的视角和广泛的应用领域而备受关注。 ICA \text{ICA} ICA旨在将观察到的复杂信号