FLAN-T5模型的文本摘要任务

2024-06-15 18:28
文章标签 flan t5 文本 摘要 模型 任务

本文主要是介绍FLAN-T5模型的文本摘要任务,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Text Summarization with FLAN-T5 — ROCm Blogs (amd.com)

在这篇博客中,我们展示了如何使用HuggingFace在AMD GPU + ROCm系统上对语言模型FLAN-T5进行微调,以执行文本摘要任务。

介绍

FLAN-T5是谷歌发布的一个开源大型语言模型,相较于之前的T5模型有所增强。它是一个已经在指令数据集上进行预训练的编码器-解码器模型,这意味着该模型具备执行诸如摘要、分类和翻译等特定任务的能力。有关FLAN-T5的更多详情,请参考[原始论文](https://arxiv.org/pdf/2210.11416.pdf)。要查看模型相对于之前的T5模型的完整改进细节,请参考[这个模型卡片](https://huggingface.co/docs/transformers/model_doc/t5v1.1)。

先决条件

• [ROCm](ROCm quick start installation guide for Linux — ROCm installation (Linux))
• [PyTorch](Installing PyTorch for ROCm — ROCm installation (Linux))
• [Linux 操作系统](System requirements (Linux) — ROCm installation (Linux))
• [一块AMD GPU](System requirements (Linux) — ROCm installation (Linux))
确保系统能识别出你的GPU:

! rocm-smi --showproductname
================= ROCm System Management Interface ================
========================= Product Info ============================
GPU[0] : Card series: Instinct MI210
GPU[0] : Card model: 0x0c34
GPU[0] : Card vendor: Advanced Micro Devices, Inc. [AMD/ATI]
GPU[0] : Card SKU: D67301
===================================================================
===================== End of ROCm SMI Log =========================

我们来检查是否安装了正确版本的ROCm。

!apt show rocm-libs -a
Package: rocm-libs
Version: 5.7.0.50700-63~22.04
Priority: optional
Section: devel
Maintainer: ROCm Libs Support <rocm-libs.support@amd.com>
Installed-Size: 13.3 kBA
Depends: hipblas (= 1.1.0.50700-63~22.04), hipblaslt (= 0.3.0.50700-63~22.04), hipfft (= 1.0.12.50700-63~22.04), hipsolver (= 1.8.1.50700-63~22.04), hipsparse (= 2.3.8.50700-63~22.04), miopen-hip (= 2.20.0.50700-63~22.04), rccl (= 2.17.1.50700-63~22.04), rocalution (= 2.1.11.50700-63~22.04), rocblas (= 3.1.0.50700-63~22.04), rocfft (= 1.0.23.50700-63~22.04), rocrand (= 2.10.17.50700-63~22.04), rocsolver (= 3.23.0.50700-63~22.04), rocsparse (= 2.5.4.50700-63~22.04), rocm-core (= 5.7.0.50700-63~22.04), hipblas-dev (= 1.1.0.50700-63~22.04), hipblaslt-dev (= 0.3.0.50700-63~22.04), hipcub-dev (= 2.13.1.50700-63~22.04), hipfft-dev (= 1.0.12.50700-63~22.04), hipsolver-dev (= 1.8.1.50700-63~22.04), hipsparse-dev (= 2.3.8.50700-63~22.04), miopen-hip-dev (= 2.20.0.50700-63~22.04), rccl-dev (= 2.17.1.50700-63~22.04), rocalution-dev (= 2.1.11.50700-63~22.04), rocblas-dev (= 3.1.0.50700-63~22.04), rocfft-dev (= 1.0.23.50700-63~22.04), rocprim-dev (= 2.13.1.50700-63~22.04), rocrand-dev (= 2.10.17.50700-63~22.04), rocsolver-dev (= 3.23.0.50700-63~22.04), rocsparse-dev (= 2.5.4.50700-63~22.04), rocthrust-dev (= 2.18.0.50700-63~22.04), rocwmma-dev (= 1.2.0.50700-63~22.04)
Homepage: https://github.com/RadeonOpenCompute/ROCm
Download-Size: 1012 B
APT-Manual-Installed: yes
APT-Sources: http://repo.radeon.com/rocm/apt/5.7 jammy/main amd64 Packages
Description: Radeon Open Compute (ROCm) Runtime software stack

确保PyTorch也识别出了GPU:

import torch
print(f"number of GPUs: {torch.cuda.device_count()}")
print([torch.cuda.get_device_name(i) for i in range(torch.cuda.device_count())])
number of GPUs: 1
['AMD Radeon Graphics']

在你开始之前,确保你已经安装了所有必需的库:

!pip install -q transformers accelerate einops datasets
!pip install --upgrade SQLAlchemy==1.4.46
!pip install -q alembic==1.4.1 numpy==1.23.4 grpcio-status==1.33.2 protobuf==3.19.6 
WARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv
警告:以'root'用户身份运行pip可能会导致权限损坏和与系统包管理器的行为冲突。建议使用虚拟环境: https://pip.pypa.io/warnings/venv

接下来导入将在本博客中使用的模块:

import time 
import torch
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer,Seq2SeqTrainingArguments, Seq2SeqTrainer, DataCollatorForSeq2Seq

加载模型

我们来加载模型及其分词器。FLAN-T5有多个不同大小的变体,从`small`到`xxl`。我们首先会使用`xxl`变体运行一些推论,并展示如何使用`small`变体在文本摘要任务上对Flan-T5进行微调。

start_time = time.time()
model_checkpoint = "google/flan-t5-xxl"
model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint)
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
print(f"Loaded in {time.time() - start_time: .2f} seconds")
print(model)
Loading checkpoint shards: 100%|██████████| 5/5 [01:23<00:00, 16.69s/it]
Loaded in  85.46 seconds
T5ForConditionalGeneration((shared): Embedding(32128, 4096)(encoder): T5Stack((embed_tokens): Embedding(32128, 4096)(block): ModuleList((0): T5Block((layer): ModuleList((0): T5LayerSelfAttention((SelfAttention): T5Attention((q): Linear(in_features=4096, out_features=4096, bias=False)(k): Linear(in_features=4096, out_features=4096, bias=False)(v): Linear(in_features=4096, out_features=4096, bias=False)(o): Linear(in_features=4096, out_features=4096, bias=False)(relative_attention_bias): Embedding(32, 64))(layer_norm): FusedRMSNorm(torch.Size([4096]), eps=1e-06, elementwise_affine=True)(dropout): Dropout(p=0.1, inplace=False))(1): T5LayerFF((DenseReluDense): T5DenseGatedActDense((wi_0): Linear(in_features=4096, out_features=10240, bias=False)(wi_1): Linear(in_features=4096, out_features=10240, bias=False)(wo): Linear(in_features=10240, out_features=4096, bias=False)(dropout): Dropout(p=0.1, inplace=False)(act): NewGELUActivation())(layer_norm): FusedRMSNorm(torch.Size([4096]), eps=1e-06, elementwise_affine=True)(dropout): Dropout(p=0.1, inplace=False))))(1-23): 23 x T5Block((layer): ModuleList((0): T5LayerSelfAttention((SelfAttention): T5Attention((q): Linear(in_features=4096, out_features=4096, bias=False)(k): Linear(in_features=4096, out_features=4096, bias=False)(v): Linear(in_features=4096, out_features=4096, bias=False)(o): Linear(in_features=4096, out_features=4096, bias=False))(layer_norm): FusedRMSNorm(torch.Size([4096]), eps=1e-06, elementwise_affine=True)(dropout): Dropout(p=0.1, inplace=False))(1): T5LayerFF((DenseReluDense): T5DenseGatedActDense((wi_0): Linear(in_features=4096, out_features=10240, bias=False)(wi_1): Linear(in_features=4096, out_features=10240, bias=False)(wo): Linear(in_features=10240, out_features=4096, bias=False)(dropout): Dropout(p=0.1, inplace=False)(act): NewGELUActivation())(layer_norm): FusedRMSNorm(torch.Size([4096]), eps=1e-06, elementwise_affine=True)(dropout): Dropout(p=0.1, inplace=False)))))(final_layer_norm): FusedRMSNorm(torch.Size([4096]), eps=1e-06, elementwise_affine=True)(dropout): Dropout(p=0.1, inplace=False))(decoder): T5Stack((embed_tokens): Embedding(32128, 4096)(block): ModuleList((0): T5Block((layer): ModuleList((0): T5LayerSelfAttention((SelfAttention): T5Attention((q): Linear(in_features=4096, out_features=4096, bias=False)(k): Linear(in_features=4096, out_features=4096, bias=False)(v): Linear(in_features=4096, out_features=4096, bias=False)(o): Linear(in_features=4096, out_features=4096, bias=False)(relative_attention_bias): Embedding(32, 64))(layer_norm): FusedRMSNorm(torch.Size([4096]), eps=1e-06, elementwise_affine=True)(dropout): Dropout(p=0.1, inplace=False))(1): T5LayerCrossAttention((EncDecAttention): T5Attention((q): Linear(in_features=4096, out_features=4096, bias=False)(k): Linear(in_features=4096, out_features=4096, bias=False)(v): Linear(in_features=4096, out_features=4096, bias=False)(o): Linear(in_features=4096, out_features=4096, bias=False))(layer_norm): FusedRMSNorm(torch.Size([4096]), eps=1e-06, elementwise_affine=True)(dropout): Dropout(p=0.1, inplace=False))(2): T5LayerFF((DenseReluDense): T5DenseGatedActDense((wi_0): Linear(in_features=4096, out_features=10240, bias=False)(wi_1): Linear(in_features=4096, out_features=10240, bias=False)(wo): Linear(in_features=10240, out_features=4096, bias=False)(dropout): Dropout(p=0.1, inplace=False)(act): NewGELUActivation())(layer_norm): FusedRMSNorm(torch.Size([4096]), eps=1e-06, elementwise_affine=True)(dropout): Dropout(p=0.1, inplace=False))))(1-23): 23 x T5Block((layer): ModuleList((0): T5LayerSelfAttention((SelfAttention): T5Attention((q): Linear(in_features=4096, out_features=4096, bias=False)(k): Linear(in_features=4096, out_features=4096, bias=False)(v): Linear(in_features=4096, out_features=4096, bias=False)(o): Linear(in_features=4096, out_features=4096, bias=False))(layer_norm): FusedRMSNorm(torch.Size([4096]), eps=1e-06, elementwise_affine=True)(dropout): Dropout(p=0.1, inplace=False))(1): T5LayerCrossAttention((EncDecAttention): T5Attention((q): Linear(in_features=4096, out_features=4096, bias=False)(k): Linear(in_features=4096, out_features=4096, bias=False)(v): Linear(in_features=4096, out_features=4096, bias=False)(o): Linear(in_features=4096, out_features=4096, bias=False))(layer_norm): FusedRMSNorm(torch.Size([4096]), eps=1e-06, elementwise_affine=True)(dropout): Dropout(p=0.1, inplace=False))(2): T5LayerFF((DenseReluDense): T5DenseGatedActDense((wi_0): Linear(in_features=4096, out_features=10240, bias=False)(wi_1): Linear(in_features=4096, out_features=10240, bias=False)(wo): Linear(in_features=10240, out_features=4096, bias=False)(dropout): Dropout(p=0.1, inplace=False)(act): NewGELUActivation())(layer_norm): FusedRMSNorm(torch.Size([4096]), eps=1e-06, elementwise_affine=True)(dropout): Dropout(p=0.1, inplace=False)))))(final_layer_norm): FusedRMSNorm(torch.Size([4096]), eps=1e-06, elementwise_affine=True)(dropout): Dropout(p=0.1, inplace=False))(lm_head): Linear(in_features=4096, out_features=32128, bias=False)
)

执行推理

值得注意的是,我们可以直接在没有进行微调的情况下使用FLAN-T5模型。可以先看一些简单的推理。

例如,我们可以让模型回答一个简单的问题:

inputs = tokenizer("How to make milk coffee", return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=100)
print(tokenizer.batch_decode(outputs, skip_special_tokens=True))
['Pour a cup of coffee into a mug. Add a tablespoon of milk. Add a pinch of sugar.']

或者我们可以要求它总结一段文字:

text = """ summarize: 
Amy: Hey Mark, have you heard about the new movie coming out this weekend?
Mark: Oh, no, I haven't. What's it called?
Amy: It's called "Stellar Odyssey." It's a sci-fi thriller with amazing special effects.
Mark: Sounds interesting. Who's in it?
Amy: The main lead is Emily Stone, and she's fantastic in the trailer. The plot revolves around a journey to a distant galaxy.
Mark: Nice! I'm definitely up for a good sci-fi flick. Want to catch it together on Saturday?
Amy: Sure, that sounds great! Let's meet at the theater around 7 pm.
"""
inputs = tokenizer(text, return_tensors="pt").input_ids
outputs = model.generate(inputs, max_new_tokens=100, do_sample=False)
tokenizer.decode(outputs[0], skip_special_tokens=True)
'Amy and Mark are going to see "Stellar Odyssey" on Saturday at 7 pm.'

微调

在本节中,我们将对模型进行微调以进行总结任务。我们将使用来自这个教程的代码作为我们的指导。正如提到的,我们将使用模型的`small`变体来进行微调:

start_time = time.time()
model_checkpoint = "google/flan-t5-small"
model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint)
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
print(f"Loaded in {time.time() - start_time: .2f} seconds")

加载数据集

我们的示例数据集是samsum数据集,包含约16K条类似Messenger的对话和总结。

from datasets import load_dataset
from evaluate import loadraw_datasets = load_dataset("samsum")

以下是我们数据集的一个样例:

print('Dialogue: ')
print(raw_datasets['train']['dialogue'][100])
print() 
print('Summary: ', raw_datasets['train']['summary'][100])
Dialogue: 
Gabby: How is you? Settling into the new house OK?
Sandra: Good. The kids and the rest of the menagerie are doing fine. The dogs absolutely love the new garden. Plenty of room to dig and run around.
Gabby: What about the hubby?
Sandra: Well, apart from being his usual grumpy self I guess he's doing OK.
Gabby: :-D yeah sounds about right for Jim.
Sandra: He's a man of few words. No surprises there. Give him a backyard shed and that's the last you'll see of him for months.
Gabby: LOL that describes most men I know.
Sandra: Ain't that the truth! 
Gabby: Sure is. :-) My one might as well move into the garage. Always tinkering and building something in there.
Sandra: Ever wondered what he's doing in there?
Gabby: All the time. But he keeps the place locked.
Sandra: Prolly building a portable teleporter or something. ;-)
Gabby: Or a time machine... LOL
Sandra: Or a new greatly improved Rabbit :-P
Gabby: I wish... Lmfao!Summary:  Sandra is setting into the new house; her family is happy with it. Then Sandra and Gabby discuss the nature of their men and laugh about their habit of spending time in the garage or a shed.

设置度量标准

接下来,我们将加载此任务的度量标准。通常,在总结任务中,我们使用ROUGE(回想导向的内容获取评估的助理)度量标准,这些标准量化原始文件与总结之间的相似度。更具体地说,这些度量标准测量系统总结和参考总结之间n-gram(n个连续词的序列)的重叠。有关此度量标准的更多细节,请参阅链接。

from evaluate import load
metric = load("rouge")
print(metric)
EvaluationModule(name: "rouge", module_type: "metric", features: [{'predictions': Value(dtype='string', id='sequence'), 'references': Sequence(feature=Value(dtype='string', id='sequence'), length=-1, id=None)}, {'predictions': Value(dtype='string', id='sequence'), 'references': Value(dtype='string', id='sequence')}], usage: """
Calculates average rouge scores for a list of hypotheses and references
Args:predictions: list of predictions to score. Each predictionshould be a string with tokens separated by spaces.references: list of reference for each prediction. Eachreference should be a string with tokens separated by spaces.rouge_types: A list of rouge types to calculate.Valid names:`"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring,`"rougeL"`: Longest common subsequence based scoring.`"rougeLsum"`: rougeLsum splits text using `"
"`.See details in https://github.com/huggingface/datasets/issues/617use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.use_aggregator: Return aggregates if this is set to True
Returns:rouge1: rouge_1 (f1),rouge2: rouge_2 (f1),rougeL: rouge_l (f1),rougeLsum: rouge_lsum (f1)
Examples:>>> rouge = evaluate.load('rouge')>>> predictions = ["hello there", "general kenobi"]>>> references = ["hello there", "general kenobi"]>>> results = rouge.compute(predictions=predictions, references=references)>>> print(results){'rouge1': 1.0, 'rouge2': 1.0, 'rougeL': 1.0, 'rougeLsum': 1.0}
""", stored examples: 0)

我们需要创建一个函数来计算ROUGE度量标准:

import nltk
nltk.download('punkt')
import numpy as npdef compute_metrics(eval_pred):predictions, labels = eval_preddecoded_preds = tokenizer.batch_decode(predictions, skip_special_tokens=True)# We need to replace -100 in the labels since we can't decode it labels = np.where(labels != -100, labels, tokenizer.pad_token_id)decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)# Add new line after each sentence for rogue metricsdecoded_preds = ["\n".join(nltk.sent_tokenize(pred.strip())) for pred in decoded_preds]decoded_labels = ["\n".join(nltk.sent_tokenize(label.strip())) for label in decoded_labels]# compute metrics result = metric.compute(predictions=decoded_preds, references=decoded_labels, use_stemmer=True, use_aggregator=True)# Extract a few resultsresult = {key: value * 100 for key, value in result.items()}# compute the average length of the generated textprediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in predictions]result["gen_len"] = np.mean(prediction_lens)return {k: round(v, 4) for k, v in result.items()}

处理数据

让我们创建一个函数来处理数据,这包括对每个样本文档的输入和输出进行标记化。我们还设置了长度阈值来截断输入和输出。

prefix = "summarize: "max_input_length = 1024
max_target_length = 128def preprocess_function(examples):inputs = [prefix + doc for doc in examples["dialogue"]]model_inputs = tokenizer(inputs, max_length=max_input_length, truncation=True)# Setup the tokenizer for targetslabels = tokenizer(text_target=examples["dialogue"], max_length=max_target_length, truncation=True)model_inputs["labels"] = labels["input_ids"]return model_inputstokenized_datasets = raw_datasets.map(preprocess_function, batched=True)

训练模型

要训练我们的模型,我们需要几样东西:

1. 数据收集器,在收集期间根据批次中最长的长度动态填充句子,而不是将整个数据集填充到最大长度。
2. 一个`TrainingArguments`类,用于自定义模型的训练方式。
3. Trainer类,这是一个用于在PyTorch中训练的API。

首先我们创建数据收集器:

data_collator = DataCollatorForSeq2Seq(tokenizer, model=model)

接下来,让我们设置我们的`TrainingArgument`类:

batch_size = 16
model_name = model_checkpoint.split("/")[-1]
args = Seq2SeqTrainingArguments(f"{model_name}-finetuned-samsum",evaluation_strategy = "epoch",learning_rate=2e-5,per_device_train_batch_size=batch_size,per_device_eval_batch_size=batch_size,weight_decay=0.01,save_total_limit=3,num_train_epochs=2,predict_with_generate=True,fp16=False,push_to_hub=False,
)

注:我们发现,由于模型是在Google TPU上预训练的,而不是在GPU上,我们需要设置`fp16=False`或`bf16=True`。否则我们会遇到溢出问题,从而导致我们的损失值出现NaN值。这可能是由于半精度浮点格式`fp16`和`bf16`之间的差异。

最后我们需要设置一个训练器API

trainer = Seq2SeqTrainer(model,args,train_dataset=tokenized_datasets["train"],eval_dataset=tokenized_datasets["validation"],data_collator=data_collator,tokenizer=tokenizer,compute_metrics=compute_metrics
)

有了这些,我们就可以训练我们的模型了!

trainer.train()
 [1842/1842 05:37, Epoch 2/2]
Epoch Training Loss Validation Loss Rouge1  Rouge2  Rougel  Rougelsum Gen Len
1 1.865700  1.693366  43.551000 20.046200 36.170400 40.096200 16.926700
2 1.816700  1.685862  43.506000 19.934800 36.278300 40.156700 16.837400

运行上述训练器应该会生成一个本地文件夹`flan-t5-small-finetuned-samsum`来存储我们的模型检查点。

推理

一旦我们有了微调模型,我们就可以使用它进行推理!让我们先重新加载来自我们本地检查点的分词器和经过微调的模型。

model = AutoModelForSeq2SeqLM.from_pretrained("flan-t5-small-finetuned-samsum/checkpoint-1500")
tokenizer = AutoTokenizer.from_pretrained("flan-t5-small-finetuned-samsum/checkpoint-1500")

接下来,我们用一些文本来总结。重要的是要像下面这样加上前缀:

text = """ summarize: 
Hannah: Hey, Mark, have you decided on your New Year's resolution yet?
Mark: Yeah, I'm thinking of finally hitting the gym regularly. What about you?
Hannah: I'm planning to read more books this year, at least one per month.
Mark: That sounds like a great goal. Any particular genre you're interested in?
Hannah: I want to explore more classic literature. Maybe start with some Dickens or Austen.
Mark: Nice choice. I'll hold you to it. We can discuss our progress over coffee.
Hannah: Deal! Accountability partners it is.
"""

最后,我们编码输入并生成摘要

inputs = tokenizer(text, return_tensors="pt").input_ids
outputs = model.generate(inputs, max_new_tokens=100, do_sample=False)
tokenizer.decode(outputs[0], skip_special_tokens=True)
'Hannah is planning to read more books this year. Mark will hold Hannah to it.'

这篇关于FLAN-T5模型的文本摘要任务的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1064226

相关文章

RedHat运维-Linux文本操作基础-AWK进阶

你不用整理,跟着敲一遍,有个印象,然后把它保存到本地,以后要用再去看,如果有了新东西,你自个再添加。这是我参考牛客上的shell编程专项题,只不过换成了问答的方式而已。不用背,就算是我自己亲自敲,我现在好多也记不住。 1. 输出nowcoder.txt文件第5行的内容 2. 输出nowcoder.txt文件第6行的内容 3. 输出nowcoder.txt文件第7行的内容 4. 输出nowcode

一份LLM资源清单围观技术大佬的日常;手把手教你在美国搭建「百万卡」AI数据中心;为啥大模型做不好简单的数学计算? | ShowMeAI日报

👀日报&周刊合集 | 🎡ShowMeAI官网 | 🧡 点赞关注评论拜托啦! 1. 为啥大模型做不好简单的数学计算?从大模型高考数学成绩不及格说起 司南评测体系 OpenCompass 选取 7 个大模型 (6 个开源模型+ GPT-4o),组织参与了 2024 年高考「新课标I卷」的语文、数学、英语考试,然后由经验丰富的判卷老师评判得分。 结果如上图所

大语言模型(LLMs)能够进行推理和规划吗?

大语言模型(LLMs),基本上是经过强化训练的 n-gram 模型,它们在网络规模的语言语料库(实际上,可以说是我们文明的知识库)上进行了训练,展现出了一种超乎预期的语言行为,引发了我们的广泛关注。从训练和操作的角度来看,LLMs 可以被认为是一种巨大的、非真实的记忆库,相当于为我们所有人提供了一个外部的系统 1(见图 1)。然而,它们表面上的多功能性让许多研究者好奇,这些模型是否也能在通常需要系

人工和AI大语言模型成本对比 ai语音模型

这里既有AI,又有生活大道理,无数渺小的思考填满了一生。 上一专题搭建了一套GMM-HMM系统,来识别连续0123456789的英文语音。 但若不是仅针对数字,而是所有普通词汇,可能达到十几万个词,解码过程将非常复杂,识别结果组合太多,识别结果不会理想。因此只有声学模型是完全不够的,需要引入语言模型来约束识别结果。让“今天天气很好”的概率高于“今天天汽很好”的概率,得到声学模型概率高,又符合表达

智能客服到个人助理,国内AI大模型如何改变我们的生活?

引言 随着人工智能(AI)技术的高速发展,AI大模型越来越多地出现在我们的日常生活和工作中。国内的AI大模型在过去几年里取得了显著的进展,不少独创的技术点和实际应用令人瞩目。 那么,国内的AI大模型有哪些独创的技术点?它们在实际应用中又有哪些出色表现呢?此外,普通人又该如何利用这些大模型提升工作和生活的质量和效率呢?本文将为你一一解析。 一、国内AI大模型的独创技术点 多模态学习 多

基于CTPN(tensorflow)+CRNN(pytorch)+CTC的不定长文本检测和识别

转发来源:https://swift.ctolib.com/ooooverflow-chinese-ocr.html chinese-ocr 基于CTPN(tensorflow)+CRNN(pytorch)+CTC的不定长文本检测和识别 环境部署 sh setup.sh 使用环境: python 3.6 + tensorflow 1.10 +pytorch 0.4.1 注:CPU环境

OpenCompass:大模型测评工具

大模型相关目录 大模型,包括部署微调prompt/Agent应用开发、知识库增强、数据库增强、知识图谱增强、自然语言处理、多模态等大模型应用开发内容 从0起步,扬帆起航。 大模型应用向开发路径:AI代理工作流大模型应用开发实用开源项目汇总大模型问答项目问答性能评估方法大模型数据侧总结大模型token等基本概念及参数和内存的关系大模型应用开发-华为大模型生态规划从零开始的LLaMA-Factor

模型压缩综述

https://www.cnblogs.com/shixiangwan/p/9015010.html

如何设置windows计划任务

如何设置windows计划任务 前言:在工作过程中写了一个python脚本,用于调用jira接口查询bug单数量,想要在本地定时任务执行,每天发送到钉钉群提醒,写下操作步骤用于记录。 1. 准备 Python 脚本 确保你的 Python 脚本已经保存到一个文件,比如 jira_reminder.py。 2. 创建批处理文件 为了方便任务计划程序运行 Python 脚本,创建一个批处理文

Linux文本三剑客sed

sed和awk grep就是查找文本当中的内容,最强大的功能就是使用扩展正则表达式 sed sed是一种流编辑器,一次处理一行内容。 如果只是展示,会放在缓冲区(模式空间),展示结束后,会从模式空间把结果删除 一行行处理,处理完当前行,才会处理下一行。直到文件的末尾。 sed的命令格式和操作选项: sed -e '操作符 ' -e '操作符' 文件1 文件2 -e表示可以跟多个操作