大模型的实践应用9-利用LoRA方法在单个GPU上微调FLAN-T5模型的过程讲解与实现

本文主要是介绍大模型的实践应用9-利用LoRA方法在单个GPU上微调FLAN-T5模型的过程讲解与实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

大家好,我是微学AI,今天给大家介绍一下大模型的实践应用9-利用LoRA方法在单个GPU上微调FLAN-T5模型的过程讲解与实现,文本我们将向您展示如何应用大型语言模型的低秩适应(LoRA)在单个GPU上微调FLAN-T5 XXL(110 亿个参数)模型。我们将利用Transformers、Accelerate和PEFT等第三方库。
在这里插入图片描述

1. 设置开发环境

这里我使用已设置好的 CUDA 驱动程序,安装PyTorch深度学习框架,还需要安装 安装 Hugging Face 中的第三方库。

# 安装 Hugging Face 中的第三方库
pip install "peft==0.2.0"
pip install "transformers==4.27.2" "datasets==2.9.0" "accelerate==0.17.1" "evaluate==0.4.0" "bitsandbytes==0.37.1" loralib --upgrade --quiet
# 安装所需的附加依赖项
pip install rouge-score tensorboard py7zr

2. 加载并准备数据集

我们将使用数据集:https://huggingface.co/datasets/samsum。
该数据集包含大约 16k 个带有摘要的对话信息数据。

{"id": "13818513","summary": "Amanda baked cookies and will bring Jerry some tomorrow.","dialogue": "Amanda: I baked cookies. Do you want some?\r\nJerry: Sure!\r\nAmanda: I'll bring you tomorrow :-)"
}

要加载samsum数据集,我们使用Datasets 库中的方法load_dataset()。

from datasets import load_dataset# Load dataset from the hub
dataset = load_dataset("samsum")print(f"Train dataset size: {len(dataset['train'])}")
print(f"Test dataset size: {len(dataset['test'])}")

为了训练我们的模型,我们需要将输入(文本)转换为Token ID。这是由Transformers Tokenizer 完成的。

from transformers import AutoTokenizer, AutoModelForSeq2SeqLMmodel_id="google/flan-t5-xxl"# Load tokenizer of FLAN-t5-XL
tokenizer = AutoTokenizer.from_pretrained(model_id)

在开始训练之前,我们需要预处理数据。抽象摘要是一项文本生成任务。我们的模型将采用文本作为输入并生成摘要作为输出。我们想要了解我们的输入和输出需要多长时间才能有效地批处理我们的数据。

from datasets import concatenate_datasets
import numpy as np
# 标记后的最大总输入序列长度。长于此的序列将被截断,短于此的序列将被填充。tokenized_inputs = concatenate_datasets([dataset["train"], dataset["test"]]).map(lambda x: tokenizer(x["dialogue"], truncation=True), batched=True, remove_columns=["dialogue", "summary"])
input_lenghts = [len(x) for x in tokenized_inputs["input_ids"]]max_source_length = int(np.percentile(input_lenghts, 85))
print(f"Max source length: {max_source_length}")tokenized_targets = concatenate_datasets([dataset["train"], dataset["test"]]).map(lambda x: tokenizer(x["summary"], truncation=True), batched=True, remove_columns=["dialogue", "summary"])
target_lenghts = [len(x) for x in tokenized_targets["input_ids"]]max_target_length = int(np.percentile(target_lenghts, 90))
print(f"Max target length: {max_target_length}")

我们在训练之前预处理数据集并将其保存到磁盘。您可以在本地计算机或 CPU 上运行此步骤并将其上传到Hugging Face Hub。

def preprocess_function(sample,padding="max_length"):# add prefix to the input for t5inputs = ["summarize: " + item for item in sample["dialogue"]]# tokenize inputsmodel_inputs = tokenizer(inputs, max_length=max_source_length, padding=padding, truncation=True)# Tokenize targets with the `text_target` keyword argumentlabels = tokenizer(text_target=sample["summary"], max_length=max_target_length, padding=padding, truncation=True)# If we are padding here, replace all tokenizer.pad_token_id in the labels by -100 when we want to ignore# padding in the loss.if padding == "max_length":labels["input_ids"] = [[(l if l != tokenizer.pad_token_id else -100) for l in label] for label in labels["input_ids"]]model_inputs["labels"] = labels["input_ids"]return model_inputstokenized_dataset = dataset.map(preprocess_function, batched=True, remove_columns=["dialogue", "summary", "id"])
print(f"Keys of tokenized dataset: {list(tokenized_dataset['train'].features)}")# save datasets to disk for later easy loading
tokenized_dataset["train"].save_to_disk("data/train")
tokenized_dataset["test"].save_to_disk("data/eval")

3. 使用 LoRA 和 bnb int-8 微调 T5模型

LoRA 技术在上一节课我已经介绍了,可以看《大模型的实践应用8-利用PEFT和LoRa技术微调大模型(LLM)的原理介绍与指南》这篇文章。

在这里插入图片描述

除了 LoRA 技术之外,我们还将使用bitanbytes LLM.int8()将冻结的 LLM 量化为 int8。这使我们能够将 FLAN-T5 XXL 所需的内存减少约 4 倍。

我们训练的第一步是加载模型。我们将使用philschmid/flan-t5-xxl-sharded-fp16 ,它是google/flan-t5-xxl的分片版本。分片将帮助我们在加载模型时不会耗尽内存。

from transformers import AutoModelForSeq2SeqLM
from peft import LoraConfig, get_peft_model, prepare_model_for_int8_training, TaskTypemodel_id = "philschmid/flan-t5-xxl-sharded-fp16"# 加载模型
model = AutoModelForSeq2SeqLM.from_pretrained(model_id, load_in_8bit=True, device_map="auto")# 定义 LoRA配置
lora_config = LoraConfig(r=16,lora_alpha=32,target_modules=["q", "v"],lora_dropout=0.05,bias="none",task_type=TaskType.SEQ_2_SEQ_LM
)
# prepare int-8 model for training
model = prepare_model_for_int8_training(model)# add LoRA adaptor
model = get_peft_model(model, lora_config)
model.print_trainable_parameters()

trainable params: 18874368 || all params: 11154206720 || trainable%: 0.16921300163961817

正如你所看到的,这里我们只训练了模型参数的0.16%!这种巨大的内存增益将使我们能够在没有内存问题的情况下微调模型。

接下来是创建一个DataCollator负责填充我们的输入和标签的对象。我们将使用Transformers 库中的DataCollatorForSeq2Seq 。

from transformers import DataCollatorForSeq2Seq
from transformers import Seq2SeqTrainer, Seq2SeqTrainingArguments# we want to ignore tokenizer pad token in the loss
label_pad_token_id = -100
# Data collator
data_collator = DataCollatorForSeq2Seq(tokenizer,model=model,label_pad_token_id=label_pad_token_id,pad_to_multiple_of=8
)output_dir="lora-flan-t5-xxl"# Define training args
training_args = Seq2SeqTrainingArguments(output_dir=output_dir,auto_find_batch_size=True,learning_rate=1e-3, # higher learning ratenum_train_epochs=5,logging_dir=f"{output_dir}/logs",logging_strategy="steps",logging_steps=500,save_strategy="no",report_to="tensorboard",
)# Create Trainer instance
trainer = Seq2SeqTrainer(model=model,args=training_args,data_collator=data_collator,train_dataset=tokenized_dataset["train"],
)
model.config.use_cache = False

现在让我们训练我们的模型并运行下面的代码。对于T5模型,出于稳定性目的保留了一些层float32。

# train model
trainer.train()

我们可以保存模型以用于推理和评估。我们暂时将其保存到磁盘,但你也可以使用该方法将其上传到Hugging Face。

peft_model_id="results"
trainer.model.save_pretrained(peft_model_id)
tokenizer.save_pretrained(peft_model_id)

保存模型以用于推理和评估。我们暂时将其保存到磁盘,但你也可以使用该方法将其上传到Hugging Face。

peft_model_id="results"
trainer.model.save_pretrained(peft_model_id)
tokenizer.save_pretrained(peft_model_id)

最后,我们的 LoRA 检查点只有 84MB大小,他包含了 samsum 的所有学习知识。

这篇关于大模型的实践应用9-利用LoRA方法在单个GPU上微调FLAN-T5模型的过程讲解与实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/431462

相关文章

Java调用C++动态库超详细步骤讲解(附源码)

《Java调用C++动态库超详细步骤讲解(附源码)》C语言因其高效和接近硬件的特性,时常会被用在性能要求较高或者需要直接操作硬件的场合,:本文主要介绍Java调用C++动态库的相关资料,文中通过代... 目录一、直接调用C++库第一步:动态库生成(vs2017+qt5.12.10)第二步:Java调用C++

Redis分片集群的实现

《Redis分片集群的实现》Redis分片集群是一种将Redis数据库分散到多个节点上的方式,以提供更高的性能和可伸缩性,本文主要介绍了Redis分片集群的实现,具有一定的参考价值,感兴趣的可以了解一... 目录1. Redis Cluster的核心概念哈希槽(Hash Slots)主从复制与故障转移2.

Feign Client超时时间设置不生效的解决方法

《FeignClient超时时间设置不生效的解决方法》这篇文章主要为大家详细介绍了FeignClient超时时间设置不生效的原因与解决方法,具有一定的的参考价值,希望对大家有一定的帮助... 在使用Feign Client时,可以通过两种方式来设置超时时间:1.针对整个Feign Client设置超时时间

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

使用Python实现一键隐藏屏幕并锁定输入

《使用Python实现一键隐藏屏幕并锁定输入》本文主要介绍了使用Python编写一个一键隐藏屏幕并锁定输入的黑科技程序,能够在指定热键触发后立即遮挡屏幕,并禁止一切键盘鼠标输入,这样就再也不用担心自己... 目录1. 概述2. 功能亮点3.代码实现4.使用方法5. 展示效果6. 代码优化与拓展7. 总结1.

Mybatis 传参与排序模糊查询功能实现

《Mybatis传参与排序模糊查询功能实现》:本文主要介绍Mybatis传参与排序模糊查询功能实现,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录一、#{ }和${ }传参的区别二、排序三、like查询四、数据库连接池五、mysql 开发企业规范一、#{ }和${ }传参的

Docker镜像修改hosts及dockerfile修改hosts文件的实现方式

《Docker镜像修改hosts及dockerfile修改hosts文件的实现方式》:本文主要介绍Docker镜像修改hosts及dockerfile修改hosts文件的实现方式,具有很好的参考价... 目录docker镜像修改hosts及dockerfile修改hosts文件准备 dockerfile 文

C/C++错误信息处理的常见方法及函数

《C/C++错误信息处理的常见方法及函数》C/C++是两种广泛使用的编程语言,特别是在系统编程、嵌入式开发以及高性能计算领域,:本文主要介绍C/C++错误信息处理的常见方法及函数,文中通过代码介绍... 目录前言1. errno 和 perror()示例:2. strerror()示例:3. perror(

CSS去除a标签的下划线的几种方法

《CSS去除a标签的下划线的几种方法》本文给大家分享在CSS中,去除a标签(超链接)的下划线的几种方法,本文给大家介绍的非常详细,感兴趣的朋友一起看看吧... 在 css 中,去除a标签(超链接)的下划线主要有以下几种方法:使用text-decoration属性通用选择器设置:使用a标签选择器,将tex

Python基础文件操作方法超详细讲解(详解版)

《Python基础文件操作方法超详细讲解(详解版)》文件就是操作系统为用户或应用程序提供的一个读写硬盘的虚拟单位,文件的核心操作就是读和写,:本文主要介绍Python基础文件操作方法超详细讲解的相... 目录一、文件操作1. 文件打开与关闭1.1 打开文件1.2 关闭文件2. 访问模式及说明二、文件读写1.