Transformer微调实战:通过低秩分解(LoRA)对T5模型进行微调(LoRA Fine Tune)

2024-08-22 16:52

本文主要是介绍Transformer微调实战:通过低秩分解(LoRA)对T5模型进行微调(LoRA Fine Tune),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

scient

scient一个用python实现科学计算相关算法的包,包括自然语言、图像、神经网络、优化算法、机器学习、图计算等模块。

scient源码和编译安装包可以在Python package index获取。

The source code and binary installers for the latest released version are available at the [Python package index].

https://pypi.org/project/scient

可以用pip安装scient

You can install scient like this:

pip install scient

也可以用setup.py安装。

Or in the scient directory, execute:

python setup.py install

scient.neuralnet

神经网络相关算法模块,包括attention、transformer、bert、lstm、resnet、crf、dataset、fit等。

scient.neuralnet.lora

实现了多个网络层的LoRA微调,包括Linear。

scient.neuralnet.lora.Linear(in_features: int, out_features: int, r:int, bias: bool = True)

Parameters

  • in_features : int
    Linear层的输入节点数.
  • out_features : int
    Linear层的输出节点数.
  • r : int
    中间层维度为r.
  • bias : bool, optional
    Linear层的bias参数.

Algorithms

LoRA的基本原理是冻结预训练的模型参数,然后在Transfomer的每一层中加入一个可训练的旁路矩阵(低秩可分离矩阵),接着将旁路输出与初始路径输出相加输入到网络当中,并只训练这些新增的旁路矩阵参数。其中,低秩可分离矩阵由两个矩阵组成,第一个矩阵负责降维,第二个矩阵负责升维,中间层维度为r,从而来模拟本征秩(intrinsic rank),这两个低秩矩阵能够大幅度减小参数量。

在这里插入图片描述

Examples

下面采用代码实例说明LoRA微调T5的过程,首先需要构建T5模型,T5模型的构建参见:Transformer经典模型实战:零基础训练一个面向中文的T5模型(Text to Text Transfer Transformer)
本示例所用的代码与上述链接中的T5模型构建、数据准备、训练、验证基本一致,不同之处是在模型构建时加入了如下LoRA部分:

pretrain_path='d:\\model.state_dict'#构建T5模型,并加载预训练的权重,后面对此预训练模型进行微调。
model=transformer.T5Transformer(vocab_size=vocab_size,dropout=0.1,ffn_size=3072)
model.load_state_dict(torch.load(pretrain_path),strict=False)#本示例的LoRA作用于attention中的query权重
for layer in model.encoder+model.decoder:# breaklayer.multi_head_attn.query=lora.Linear(layer.multi_head_attn.query.in_features, layer.multi_head_attn.query.out_features,r=64,bias=layer.multi_head_attn.query.bias)#LoRA矩阵的命名为 lora_A 和 lora_B,这里将LoRA矩阵之外的权重进行冻结
for k,v in model.named_parameters():# breakif 'lora' not in k:v.requires_grad=Falseelse:print(k,v.requires_grad)

进行如上设置,采用T5模型相同的训练方式,即可对T5进行微调,具体训练方式参见:Transformer经典模型实战:零基础训练一个面向中文的T5模型(Text to Text Transfer Transformer)

在训练前后,可以查看LoRA权重不断更新,非LoRA权重不更新,查看方式如下:

model.encoder[0].multi_head_attn.query.lora_A
model.encoder[0].multi_head_attn.query.lora_B
model.encoder[0].multi_head_attn.query.weight
model.encoder[0].multi_head_attn.query.bias

附代码中用到的tokenizer模型spiece.model、训练数据rewrite_train3.xlsx和预训练模型model.state_dict的下载地址:
链接:https://pan.baidu.com/s/12vEZBYldXvPrJTiFUEKGUw?pwd=DTFM
提取码:DTFM

这篇关于Transformer微调实战:通过低秩分解(LoRA)对T5模型进行微调(LoRA Fine Tune)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1096845

相关文章

Golang使用minio替代文件系统的实战教程

《Golang使用minio替代文件系统的实战教程》本文讨论项目开发中直接文件系统的限制或不足,接着介绍Minio对象存储的优势,同时给出Golang的实际示例代码,包括初始化客户端、读取minio对... 目录文件系统 vs Minio文件系统不足:对象存储:miniogolang连接Minio配置Min

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

SpringBoot使用minio进行文件管理的流程步骤

《SpringBoot使用minio进行文件管理的流程步骤》MinIO是一个高性能的对象存储系统,兼容AmazonS3API,该软件设计用于处理非结构化数据,如图片、视频、日志文件以及备份数据等,本文... 目录一、拉取minio镜像二、创建配置文件和上传文件的目录三、启动容器四、浏览器登录 minio五、

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt

python-nmap实现python利用nmap进行扫描分析

《python-nmap实现python利用nmap进行扫描分析》Nmap是一个非常用的网络/端口扫描工具,如果想将nmap集成进你的工具里,可以使用python-nmap这个python库,它提供了... 目录前言python-nmap的基本使用PortScanner扫描PortScannerAsync异

网页解析 lxml 库--实战

lxml库使用流程 lxml 是 Python 的第三方解析库,完全使用 Python 语言编写,它对 XPath表达式提供了良好的支 持,因此能够了高效地解析 HTML/XML 文档。本节讲解如何通过 lxml 库解析 HTML 文档。 pip install lxml lxm| 库提供了一个 etree 模块,该模块专门用来解析 HTML/XML 文档,下面来介绍一下 lxml 库

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi