首页
Python
Java
前端
数据库
Linux
Chatgpt专题
开发者工具箱
transformer专题
Transformer从零详细解读
Transformer从零详细解读 一、从全局角度概况Transformer 我们把TRM想象为一个黑盒,我们的任务是一个翻译任务,那么我们的输入是中文的“我爱你”,输入经过TRM得到的结果为英文的“I LOVE YOU” 接下来我们对TRM进行细化,我们将TRM分为两个部分,分别为Encoders(编码器)和Decoders(解码器) 在此基础上我们再进一步细化TRM的
阅读更多...
LLM模型:代码讲解Transformer运行原理
视频讲解、获取源码:LLM模型:代码讲解Transformer运行原理(1)_哔哩哔哩_bilibili 1 训练保存模型文件 2 模型推理 3 推理代码 import torchimport tiktokenfrom wutenglan_model import WutenglanModelimport pyttsx3# 设置设备为CUDA(如果可用),否则使用CPU#
阅读更多...
逐行讲解Transformer的代码实现和原理讲解:计算交叉熵损失
LLM模型:Transformer代码实现和原理讲解:前馈神经网络_哔哩哔哩_bilibili 1 计算交叉熵目的 计算 loss = F.cross_entropy(input=linear_predictions_reshaped, target=targets_reshaped) 的目的是为了评估模型预测结果与实际标签之间的差距,并提供一个量化指标,用于指导模型的训练过程。具体来说,交叉
阅读更多...
深度学习每周学习总结N9:transformer复现
🍨 本文为🔗365天深度学习训练营 中的学习记录博客🍖 原作者:K同学啊 | 接辅导、项目定制 目录 多头注意力机制前馈传播位置编码编码层解码层Transformer模型构建使用示例 本文为TR3学习打卡,为了保证记录顺序我这里写为N9 总结: 之前有学习过文本预处理的环节,对文本处理的主要方式有以下三种: 1:词袋模型(one-hot编码) 2:TF-I
阅读更多...
RNN发展(RNN/LSTM/GRU/GNMT/transformer/RWKV)
RNN到GRU参考: https://blog.csdn.net/weixin_36378508/article/details/115101779 tRANSFORMERS参考: seq2seq到attention到transformer理解 GNMT 2016年9月 谷歌,基于神经网络的翻译系统(GNMT),并宣称GNMT在多个主要语言对的翻译中将翻译误差降低了55%-85%以上, G
阅读更多...
ModuleNotFoundError: No module named ‘diffusers.models.dual_transformer_2d‘解决方法
Python应用运行报错,部分错误信息如下: Traceback (most recent call last): File “\pipelines_ootd\unet_vton_2d_blocks.py”, line 29, in from diffusers.models.dual_transformer_2d import DualTransformer2DModel ModuleNotF
阅读更多...
用最简单的话来解释大模型中的Transformer架构
开篇 我个人的观点是要想系统而又透彻地理解 Transformer,至少要遵循下面这样一个思路(步骤): 理解NLP基础 在探讨Transformers之前,了解自然语言处理(NLP)的一些基本知识至关重要。NLP使计算机能够理解和生成自然语言,文本的表征是其核心任务之一。传统的语言模型往往依赖于递归神经网络(RNN)处理序列数据,但RNN在长序列中表现较差。为了解决这一问题,必须引入先
阅读更多...
【大规模语言模型:从理论到实践】Transformer中PositionalEncoder详解
书籍链接:大规模语言模型:从理论到实践 第15页位置表示层代码详解 1. 构造函数 __init__() def __init__(self, d_model, max_seq_len=80):super().__init__()self.d_model = d_model # 嵌入的维度(embedding dimension) d_model: 表示输入词向量的维度。max_se
阅读更多...
【AIGC】Transformer模型:Postion Embedding概述、应用场景和实现方式的详细介绍。
🏆🏆欢迎大家来到我们的天空🏆🏆 🏆🏆如果文章内容对您有所触动,别忘了点赞、关注,收藏! 🏆 作者简介:我们的天空 🏆《头衔》:大厂高级软件测试工程师,阿里云开发者社区专家博主,CSDN人工智能领域新星创作者。 🏆《博客》:人工智能,深度学习,机器学习,python,自然语言处理,AIGC等分享。 所属的专栏:TensorFlow项目开发实战,人工智能技术 🏆🏆主页:我们
阅读更多...
《Transformer 模型》
一、引言 在自然语言处理领域,Transformer 模型的出现带来了革命性的变化。它以其强大的性能和并行计算能力,在机器翻译、文本生成、语言理解等众多任务中取得了显著的成果。本文将深入探讨 Transformer 模型的原理、结构、训练方法以及应用场景,帮助读者全面了解这一重要的自然语言处理技术。 二、Transformer 模型的背景 (一)自然语言处理的发展历程 自然语
阅读更多...
transformer之预训练task小析(五)
上接transformer预训练task之小析(四) 首先思考一个问题,怎么表示掌握了一门语言? 最好的方式可能体现在遣词造句上吧,比如饱受诟病的八股文上有很多的旷世奇作[1],比如很多读起来朗朗上口的👇 天对地,雨对风。大陆对长空。山花对海树,赤日对苍穹。雷隐隐,雾蒙蒙。日下对天中。风高秋月白,雨霁晚霞红。牛女二星河左右,参商两曜斗西东。十月塞边,飒飒寒霜惊
阅读更多...
【深度学习 transformer】transformer 训练一个文本分类任务,超简单了
Happy Transformer是一个基于Python的库,用于构建和训练自然语言处理(NLP)模型,特别是Transformer模型。它旨在提供一种简单、直观的方式来使用Transformer模型进行文本分类、命名实体识别、情感分析等任务。以下是Happy Transformer的一些主要特点: 简洁的API:Happy Transformer提供了一个简洁的API,使得用户可以轻松地定义、
阅读更多...
Vision Transformer (ViT) + 代码【详解】
文章目录 1、Vision Transformer (ViT) 介绍2、patch embedding3、代码3.1 class embedding + Positional Embedding3.2 Transformer Encoder3.3 classifier3.4 ViT总代码 1、Vision Transformer (ViT) 介绍 VIT论文的摘要如下,谷歌
阅读更多...
【Transformer】基本概述
文章目录 提出背景核心思想—注意力机制流程解析参考资料 提出背景 在Transformer模型出现之前,循环神经网络(RNN)及其变体,如长短期记忆网络(LSTM)和门控循环单元(GRU),是处理序列数据的主流方法。但是RNN系列模型存在一些固有的问题,如难以并行化处理、对长距离依赖的捕捉能力有限等。为了解决这些问题,Transformer模型应运而生,于2017年由Vas
阅读更多...
Transformer直接预测完整数学表达式,推理速度提高多个数量级
前言 来自 Mata AI、法国索邦大学、巴黎高师的研究者成功让 Transformer 直接预测出完整的数学表达式。 转载自丨机器之心 符号回归,即根据观察函数值来预测函数数学表达式的任务,通常涉及两步过程:预测表达式的「主干」并选择数值常数,然后通过优化非凸损失函数来拟合常数。其中用到的方法主要是遗传编程,通过多次迭代子程序实现算法进化。神经网络最近曾在一次尝试中预测出正确的表达式主干,
阅读更多...
时序预测 | 基于MAMbaS+transformer时间序列预测模型(pytorch)
目录 效果一览基本介绍程序设计参考资料 效果一览 基本介绍 MAMBAS,transformer python代码,pytorch架构 可以发刊,先发先的,高精度代码。 需知:好的创新性模型可以事半功倍。。 适合功率预测,风电光伏预测,负荷预测,流量预测,浓度预测,机械领域预测等等各种时间序列直接预测。 MAMBAS是在2024年5月顶会提出的一个对MAMBA的改进版
阅读更多...
NLP-生成模型-2017-Transformer(一):Encoder-Decoder模型【非序列化;并行计算】【O(n²·d),n为序列长度,d为维度】【用正余弦函数进行“绝对位置函数式编码”】
《原始论文:Attention Is All You Need》 一、Transformer 概述 在2017年《Attention Is All You Need》论文里第一次提出Transformer之前,常用的序列模型都是基于卷积神经网络或者循环神经网络,表现最好的模型也是基于encoder- decoder框架的基础加上attention机制。 2018年10月,Google发出一篇
阅读更多...
深度学习项目实践——QQ聊天机器人(transformer)(三)功能实现的方法——NoneBot2插件结构与编写
深度学习项目实践——QQ聊天机器人(transformer)(三)功能实现的方法——NoneBot2插件结构与编写 在前两节中,我们详细讲解了QQ聊天的原理、QQ机器人的框架与环境配置的流程。本节将重点介绍NoneBot2的插件构成,以及如何从零开始编写一个属于自己的插件。这一篇文章主要就是充当搬运工,参考了nonebot2的官方文档 第一步:了解NoneBot2的架构 在开始编写插件之前,
阅读更多...
PyTorch中使用Transformer对一维序列进行分类的源代码
在PyTorch中使用Transformer对一维序列进行分类是一种常见做法,尤其是在处理时间序列数据、自然语言处理等领域。Transformer模型因其并行化处理能力和自注意力机制而成为许多任务的首选模型。 下面是一个使用PyTorch实现Transformer对一维序列进行分类的完整示例代码,包括数据预处理、模型定义、训练和评估等部分。 1. 准备工作 首先,我们需要导入所需的
阅读更多...
TPH-YOLOv5:基于Transformer预测头的改进YOLOv5,用于无人机捕获场景的目标检测
摘要 提出了TPH-YOLOv5。在YOLOv5的基础上,增加了一个预测头来检测不同尺度的目标。然后用Transformer Prediction Heads(TPH)代替原有的预测头,探索自注意机制的预测潜力。还集成了卷积块注意力模型(CBAM),用来发现密集对象场景中的注意力区域。为了实现所提出的TPH-YOLOv 5的更多改进,提供了一些有用的策略,如数据增强,多尺度测试,
阅读更多...
在大语言模型中,生成文本的退出机制,受max_generate_tokens限制,并不是所有的问答都完整的跑完整个transformer模型
目录 在大语言模型中,生成文本的退出机制,受max_generate_tokens限制,并不是所有的问答都完整的跑完整个transformer模型 1. max_generate_tokens的作用 2. 退出机制与Transformer模型 3. 实际应用中的影响 4. 结论 在大语言模型中,生成文本的退出机制,受max_generate_tokens限制,并不是所有的
阅读更多...
【王树森】BERT:预训练Transformer模型(个人向笔记)
前言 BERT:Bidirectional Encoder Representations from TransformerBERT是用来预训练Transformer模型的encoder的本节课只讲述主要思想BERT用两个主要思想来训练Transformer的encoder网络:①随机遮挡单词,让encoder根据上下文来预测被遮挡的单词。②把两句话放在一起,让encoder判断是不是原文相邻的
阅读更多...
客流预测 | 基于Transformer下车站点客流推断研究(Matlab)
目录 效果一览基本介绍程序设计参考资料 效果一览 基本介绍 基于Transformer的车站客流推断研究是指利用Transformer模型来预测车站的客流情况。Transformer是一种强大的深度学习模型,特别擅长处理序列数据。研究可以为城市交通管理提供重要决策支持,帮助优化公共交通资源配置、减少拥堵、提高服务效率等。随着技术的不断进步,基于先进技术
阅读更多...
深度学习项目实践——qq聊天机器人(transformer)(二)配置环境与部署
深度学习项目实践——qq聊天机器人(transformer)(二)配置环境与部署 上一节我们讲解了qq聊天的原理和qq机器人的框架以及运行流程,这一节我们来讲怎么配置环境,部署qq机器人。 第一步——配置环境 有关代替qq客户端实现反向websocket连接这一部分内容由于一些原因,我无法在这里具体讲解,我把这部分内容放到了github中我的项目内,请自行查看。 机器人主体——nonebo
阅读更多...
【王树森】Vision Transformer (ViT) 用于图片分类(个人向笔记)
图片分类任务 给定一张图片,现在要求神经网络能够输出它对这个图片的分类结果。下图表示神经网络有40%的信心认定这个图片是狗 ResNet(CNN)曾经是是图像分类的最好模型在有足够大数据做预训练的情况下,ViT要强于ResNetViT 就是Transformer Encoder网络 Split Image into Patches 在划分图片的时候,需要指定两个超参数 patch siz
阅读更多...
基于YOLO的车牌检测识别(YOLO+Transformer)
概述: 基于深度学习的车牌识别,其中,车辆检测网络直接使用YOLO侦测。而后,才是使用网络侦测车牌与识别车牌号。 车牌的侦测网络,采用的是resnet18,网络输出检测边框的仿射变换矩阵,可检测任意形状的四边形。 车牌号序列模型,采用Resnet18+transformer模型,直接输出车牌号序列。 数据集上,车牌检测使用CCPD 2019数据集,在训练检测模型的时候,会使用程序生成虚假的车
阅读更多...