Transformer从零详细解读

2024-09-08 00:12
文章标签 transformer 解读 详细

本文主要是介绍Transformer从零详细解读,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Transformer从零详细解读

一、从全局角度概况Transformer

​ 我们把TRM想象为一个黑盒,我们的任务是一个翻译任务,那么我们的输入是中文的“我爱你”,输入经过TRM得到的结果为英文的“I LOVE YOU”

image-20240907204119837

​ 接下来我们对TRM进行细化,我们将TRM分为两个部分,分别为Encoders(编码器)和Decoders(解码器)
image-20240907204310979

​ 在此基础上我们再进一步细化TRM的结构:
image-20240907204516292

​ 这里不一定是6个encoder和6个decoder,但是每个encoder之间的结构都是相同的,但是参数上并不相同,在训练的时候并不是只训练一个encoders,而是每个encoders都在训练。
​ 我们再看一下TRM原论文中的结构图:
image-20240907204735178

​ N是自己确定的数字,encoders和decoders之间的结构很不相同。

二、位置编码详细解读

​ 我们将encoder部分提取出来看,我们将encoder分为以下三个部分:
image-20240907205013310

​ 我们先看输入部分,输入部分分为:

  1. Embedding

    image-20240907205220310

    ​ embedding的操作方法就是:假如现在输入12个字,每个字用一个512维度的向量表示,那么这12个字展开后就是一个12*512的二维矩阵。矩阵的每个位置有两种初始化方式,一种是随机初始化,另一种是wordtovector方式。

  2. 位置编码

    ​ 我们从RNN结构来引入位置编码:
    image-20240907205626997

    ​ 对于RNN的所有的timesteps都共享同一套参数(U,W,V),例如右图上的“我”,“爱”,“你”在展开以后,使用的都是同一套参数(U,W,V)。

    面试题:RNN的梯度消失和普通网络的梯度消失有什么区别?
    RNN的梯度是一个总的梯度和,它的梯度消失并不是变为0,而是总的梯度被近距离梯度主导,被远距离梯度忽略不计。

1.位置编码公式:

image-20240907210344429

​ 2i代表偶数,在偶数位置使用sin,在2i+1奇数的位置使用cos,就比如我爱你中的爱这个字,进行展开,其中的偶数位置使用sin表达式,奇数位置使用cos表达式。得到展开式以后:
image-20240907210608231

​ 我们把字向量他们原本位置上的值与他们的位置编码相加,得到一个最终的512的维度的向量,作为TRM的输入。

2.为什么位置编码是有用的

​ 我们看下图中的推导,正余弦位置函数,这个体现出的是一种绝对位置信息。
image-20240907210902528

​ 以“我 爱 你”为例,pos+k 代表“你”,pos代表“我”,k代表“爱”,也就是说,“我爱你”中的“你”,可以被“我”和“爱” 线性组合起来,这样的线性组合就意味着绝对的位置向量中蕴含了相对位置信息。但是这种相对位置信息会在注意力机制那里消失。

三、多头注意力机制

1.基本的注意力机制

​ 我们看下图:
image-20240907211541271

​ 我们在看一张图的时候,一张图像总有一些部分是我们特别关注的地方。我们想通过一种方式得到“婴儿在干嘛”这句话 与图像中的哪部分区域更加关注/相似,这就是注意力机制的一种形式。

​ 计算公式:
image-20240907211815247

​ 我们举一个例子,就拿上面的例子为例,我们通过计算来判断下“婴儿在干嘛”这句话与图片中的哪部分区域更加相似,看下图:

image-20240907212008937 我单抽出婴儿这个单词,我们将区域分为四个部分,我们将“婴儿”作为q向量,四个区域分别对应K向量,和他们各自的V向量。我们判断“婴儿”与四个区域点乘的结果哪个是最大的,最大就代表了最相似。

​ 我们再举一个词与词的例子:
image-20240907212352609

​ 我们的计算步骤如下图:
image-20240907213938735

在只有单词向量的情况下,如何获取QKV

image-20240907214210685

​ 简单来说就是x1与WQ得到q1,,,行列分别相乘。

2.计算QK相似度,得到attention值

image-20240907214449575

​ 为什么要除以根号dk,q与k相乘值很大,softmax在反向传播的时候值很小,梯度会消失。在实际代码使用矩阵,方便并行。

image-20240907214659540

3.多头注意力机制

​ 多头,相当于把原始数据打到了多个不同的空间,保证TRM捕获到不同空间中的多种信息。

image-20240907215013033

​ 最后,我们将多套QKV计算得到的 结果通过一次矩阵计算进行合并,这样就可以得到我们多头注意力的输出。

image-20240907215151412

四、残差详解

1.什么是残差网络

​ 残差的原则就是输出至少不比输入差!多进行一个加法操作。image-20240907215526751

​ 我们可以再看一个很经典的图:
image-20240907215647125

2.残差网络的数学推导

image-20240907215840835

五、Batch Normal详解

​ BN的效果差,所以不用。再nlp中,很少使用BN,大多使用LN。

1.什么是BN,以及使用场景

image-20240907220213021

​ 我们看下面一张图:
image-20240907220301380

​ 每一行代表一个特征,每个人的“体重,身高”等指标,每个人的第一个特征都是“体重”。x1,x2分别代表不同的人。

2.BN的优点

  1. 可以解决内部协变量偏移
  2. 缓解了梯度饱和问题(如果使用sigmoid激活函数的话),加快收敛

3.BN的缺点

  1. batch_size较小的时候,效果差,局部的方差并不能代表全局
  2. BN再RNN中效果差,我们看下面的例子:前9个句子只有5个向量,但是第10个句子的长度达到20个向量的,这样导致第6到20维无法做BN,从而导致BN在RNN的处理中效果差
    image-20240907220713990

六、Layer Normal详解

1.如何理解LN

​ 理解:为什么LayerNorm单独对一个样本的所有单词做缩放可以起到效果。

​ 我们如果把BN引申到RNN,下面这张图则表示“我”和“今”是同一层的语义信息,,,“爱“和”天“是一层语义信息里面。

image-20240907221036404

​ 而在LN中,我们认为这两段话每段话都是分别的一个语义信息。

2.前馈神经网络

image-20240907221259306

七、Decoder详解

image-20240907221431239

1.多头注意力机制

image-20240907221510988

2.为什么需要mask

image-20240907221541150

​ 如果我们没有mask去训练的时候,我们在训练you的时候,所有的单词都对you做出了贡献。这样会导致训练和预测是不对等的。
image-20240907221638396

​ 正确的做法是:
image-20240907221734234

3.交互层

​ 我们再来看一下交互层,在交互层我们需要注意的是encoder的输出需要和每一个decoder做交互。
image-20240907221920599

image-20240907221957464

image-20240907222101400

image-20240907222158754

这篇关于Transformer从零详细解读的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1146562

相关文章

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

Spring AI集成DeepSeek的详细步骤

《SpringAI集成DeepSeek的详细步骤》DeepSeek作为一款卓越的国产AI模型,越来越多的公司考虑在自己的应用中集成,对于Java应用来说,我们可以借助SpringAI集成DeepSe... 目录DeepSeek 介绍Spring AI 是什么?1、环境准备2、构建项目2.1、pom依赖2.2

Goland debug失效详细解决步骤(合集)

《Golanddebug失效详细解决步骤(合集)》今天用Goland开发时,打断点,以debug方式运行,发现程序并没有断住,程序跳过了断点,直接运行结束,网上搜寻了大量文章,最后得以解决,特此在这... 目录Bug:Goland debug失效详细解决步骤【合集】情况一:Go或Goland架构不对情况二:

Python itertools中accumulate函数用法及使用运用详细讲解

《Pythonitertools中accumulate函数用法及使用运用详细讲解》:本文主要介绍Python的itertools库中的accumulate函数,该函数可以计算累积和或通过指定函数... 目录1.1前言:1.2定义:1.3衍生用法:1.3Leetcode的实际运用:总结 1.1前言:本文将详

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Spring Boot整合log4j2日志配置的详细教程

《SpringBoot整合log4j2日志配置的详细教程》:本文主要介绍SpringBoot项目中整合Log4j2日志框架的步骤和配置,包括常用日志框架的比较、配置参数介绍、Log4j2配置详解... 目录前言一、常用日志框架二、配置参数介绍1. 日志级别2. 输出形式3. 日志格式3.1 PatternL

Springboot 中使用Sentinel的详细步骤

《Springboot中使用Sentinel的详细步骤》文章介绍了如何在SpringBoot中使用Sentinel进行限流和熔断降级,首先添加依赖,配置Sentinel控制台地址,定义受保护的资源,... 目录步骤 1: 添加 Sentinel 依赖步骤 2: 配置 Sentinel步骤 3: 定义受保护的

本地私有化部署DeepSeek模型的详细教程

《本地私有化部署DeepSeek模型的详细教程》DeepSeek模型是一种强大的语言模型,本地私有化部署可以让用户在自己的环境中安全、高效地使用该模型,避免数据传输到外部带来的安全风险,同时也能根据自... 目录一、引言二、环境准备(一)硬件要求(二)软件要求(三)创建虚拟环境三、安装依赖库四、获取 Dee

MySQL中的MVCC底层原理解读

《MySQL中的MVCC底层原理解读》本文详细介绍了MySQL中的多版本并发控制(MVCC)机制,包括版本链、ReadView以及在不同事务隔离级别下MVCC的工作原理,通过一个具体的示例演示了在可重... 目录简介ReadView版本链演示过程总结简介MVCC(Multi-Version Concurr

关于Gateway路由匹配规则解读

《关于Gateway路由匹配规则解读》本文详细介绍了SpringCloudGateway的路由匹配规则,包括基本概念、常用属性、实际应用以及注意事项,路由匹配规则决定了请求如何被转发到目标服务,是Ga... 目录Gateway路由匹配规则一、基本概念二、常用属性三、实际应用四、注意事项总结Gateway路由