PyTorch中使用Transformer对一维序列进行分类的源代码

2024-09-01 20:28

本文主要是介绍PyTorch中使用Transformer对一维序列进行分类的源代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 在PyTorch中使用Transformer对一维序列进行分类是一种常见做法,尤其是在处理时间序列数据、自然语言处理等领域。Transformer模型因其并行化处理能力和自注意力机制而成为许多任务的首选模型。

下面是一个使用PyTorch实现Transformer对一维序列进行分类的完整示例代码,包括数据预处理、模型定义、训练和评估等部分。

1. 准备工作

首先,我们需要导入所需的库,并定义一些基本的参数。

1import torch
2import torch.nn as nn
3import torch.optim as optim
4from torch.utils.data import Dataset, DataLoader
5from sklearn.model_selection import train_test_split
6from sklearn.preprocessing import StandardScaler
7import numpy as np
8
9# 定义超参数
10input_dim = 10  # 序列的维度
11seq_length = 50  # 序列长度
12hidden_dim = 128  # Transformer编码器隐藏层维度
13num_heads = 8  # 多头注意力机制中的头数
14num_layers = 6  # 编码器层数
15dropout = 0.1  # dropout概率
16num_classes = 3  # 分类类别数
17batch_size = 32
18num_epochs = 100
19learning_rate = 0.001
2. 数据预处理

假设我们有一组一维序列数据,我们将对其进行预处理,并将其划分为训练集和测试集。

1# 生成模拟数据
2def generate_data(n_samples, seq_length, input_dim, num_classes):
3    X = np.random.randn(n_samples, seq_length, input_dim)
4    y = np.random.randint(0, num_classes, size=(n_samples,))
5    return X, y
6
7# 生成数据
8X, y = generate_data(1000, seq_length, input_dim, num_classes)
9
10# 数据标准化
11scaler = StandardScaler()
12X = scaler.fit_transform(X.reshape(-1, input_dim)).reshape(X.shape)
13
14# 划分数据集
15X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
16
17# 定义数据集类
18class SequenceDataset(Dataset):
19    def __init__(self, X, y):
20        self.X = X
21        self.y = y
22
23    def __len__(self):
24        return len(self.y)
25
26    def __getitem__(self, idx):
27        return torch.tensor(self.X[idx], dtype=torch.float32), torch.tensor(self.y[idx], dtype=torch.long)
28
29train_dataset = SequenceDataset(X_train, y_train)
30test_dataset = SequenceDataset(X_test, y_test)
31
32train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
33test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
3. 定义Transformer模型

接下来定义一个基于Transformer的模型,该模型包含嵌入层、位置编码、多头自注意力机制和前馈神经网络等组件。

 
1class PositionalEncoding(nn.Module):
2    def __init__(self, d_model, max_len=5000):
3        super(PositionalEncoding, self).__init__()
4        pe = torch.zeros(max_len, d_model)
5        position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
6        div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-np.log(10000.0) / d_model))
7        pe[:, 0::2] = torch.sin(position * div_term)
8        pe[:, 1::2] = torch.cos(position * div_term)
9        pe = pe.unsqueeze(0).transpose(0, 1)
10        self.register_buffer('pe', pe)
11
12    def forward(self, x):
13        return x + self.pe[:x.size(0), :]
14
15class TransformerClassifier(nn.Module):
16    def __init__(self, input_dim, hidden_dim, num_heads, num_layers, num_classes, dropout):
17        super(TransformerClassifier, self).__init__()
18        self.embedding = nn.Linear(input_dim, hidden_dim)
19        self.positional_encoding = PositionalEncoding(hidden_dim)
20        encoder_layer = nn.TransformerEncoderLayer(d_model=hidden_dim, nhead=num_heads, dropout=dropout)
21        self.transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers)
22        self.classifier = nn.Linear(hidden_dim, num_classes)
23        self.dropout = nn.Dropout(dropout)
24
25    def forward(self, src):
26        embedded = self.embedding(src) * np.sqrt(hidden_dim)
27        encoded = self.positional_encoding(embedded)
28        output = self.transformer_encoder(encoded)
29        output = output.mean(dim=0)  # 平均池化
30        output = self.classifier(output)
31        return output
32
33model = TransformerClassifier(input_dim, hidden_dim, num_heads, num_layers, num_classes, dropout)
4. 训练模型

定义损失函数、优化器,并进行模型训练。

1criterion = nn.CrossEntropyLoss()
2optimizer = optim.Adam(model.parameters(), lr=learning_rate)
3
4def train(model, data_loader, criterion, optimizer, device):
5    model.train()
6    total_loss = 0.0
7    for batch_idx, (data, target) in enumerate(data_loader):
8        data, target = data.to(device), target.to(device)
9        optimizer.zero_grad()
10        output = model(data.permute(1, 0, 2))  # 调整数据维度为 (seq_len, batch_size, input_dim)
11        loss = criterion(output, target)
12        loss.backward()
13        optimizer.step()
14        total_loss += loss.item()
15    return total_loss / (batch_idx + 1)
16
17def evaluate(model, data_loader, criterion, device):
18    model.eval()
19    total_loss = 0.0
20    correct = 0
21    with torch.no_grad():
22        for data, target in data_loader:
23            data, target = data.to(device), target.to(device)
24            output = model(data.permute(1, 0, 2))
25            loss = criterion(output, target)
26            total_loss += loss.item()
27            pred = output.argmax(dim=1, keepdim=True)
28            correct += pred.eq(target.view_as(pred)).sum().item()
29    accuracy = correct / len(data_loader.dataset)
30    return total_loss / len(data_loader), accuracy
31
32device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
33model.to(device)
34
35for epoch in range(num_epochs):
36    train_loss = train(model, train_loader, criterion, optimizer, device)
37    test_loss, test_acc = evaluate(model, test_loader, criterion, device)
38    print(f"Epoch {epoch+1}/{num_epochs}, Train Loss: {train_loss:.4f}, Test Loss: {test_loss:.4f}, Test Acc: {test_acc:.4f}")
5. 总结

以上代码实现了一个使用Transformer对一维序列进行分类的完整流程,包括数据预处理、模型定义、训练和评估。该模型适用于处理时间序列数据或其他一维序列数据的分类任务。通过调整超参数和网络结构,可以进一步优化模型的性能。

这篇关于PyTorch中使用Transformer对一维序列进行分类的源代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1127965

相关文章

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

oracle DBMS_SQL.PARSE的使用方法和示例

《oracleDBMS_SQL.PARSE的使用方法和示例》DBMS_SQL是Oracle数据库中的一个强大包,用于动态构建和执行SQL语句,DBMS_SQL.PARSE过程解析SQL语句或PL/S... 目录语法示例注意事项DBMS_SQL 是 oracle 数据库中的一个强大包,它允许动态地构建和执行

如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解

《如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解》:本文主要介绍如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别的相关资料,描述了如何使用海康威视设备网络SD... 目录前言开发流程问题和解决方案dll库加载不到的问题老旧版本sdk不兼容的问题关键实现流程总结前言作为

SpringBoot中使用 ThreadLocal 进行多线程上下文管理及注意事项小结

《SpringBoot中使用ThreadLocal进行多线程上下文管理及注意事项小结》本文详细介绍了ThreadLocal的原理、使用场景和示例代码,并在SpringBoot中使用ThreadLo... 目录前言技术积累1.什么是 ThreadLocal2. ThreadLocal 的原理2.1 线程隔离2

Python itertools中accumulate函数用法及使用运用详细讲解

《Pythonitertools中accumulate函数用法及使用运用详细讲解》:本文主要介绍Python的itertools库中的accumulate函数,该函数可以计算累积和或通过指定函数... 目录1.1前言:1.2定义:1.3衍生用法:1.3Leetcode的实际运用:总结 1.1前言:本文将详

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

浅析如何使用Swagger生成带权限控制的API文档

《浅析如何使用Swagger生成带权限控制的API文档》当涉及到权限控制时,如何生成既安全又详细的API文档就成了一个关键问题,所以这篇文章小编就来和大家好好聊聊如何用Swagger来生成带有... 目录准备工作配置 Swagger权限控制给 API 加上权限注解查看文档注意事项在咱们的开发工作里,API

关于最长递增子序列问题概述

《关于最长递增子序列问题概述》本文详细介绍了最长递增子序列问题的定义及两种优化解法:贪心+二分查找和动态规划+状态压缩,贪心+二分查找时间复杂度为O(nlogn),通过维护一个有序的“尾巴”数组来高效... 一、最长递增子序列问题概述1. 问题定义给定一个整数序列,例如 nums = [10, 9, 2

Java数字转换工具类NumberUtil的使用

《Java数字转换工具类NumberUtil的使用》NumberUtil是一个功能强大的Java工具类,用于处理数字的各种操作,包括数值运算、格式化、随机数生成和数值判断,下面就来介绍一下Number... 目录一、NumberUtil类概述二、主要功能介绍1. 数值运算2. 格式化3. 数值判断4. 随机