PyTorch中使用Transformer对一维序列进行分类的源代码

2024-09-01 20:28

本文主要是介绍PyTorch中使用Transformer对一维序列进行分类的源代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 在PyTorch中使用Transformer对一维序列进行分类是一种常见做法,尤其是在处理时间序列数据、自然语言处理等领域。Transformer模型因其并行化处理能力和自注意力机制而成为许多任务的首选模型。

下面是一个使用PyTorch实现Transformer对一维序列进行分类的完整示例代码,包括数据预处理、模型定义、训练和评估等部分。

1. 准备工作

首先,我们需要导入所需的库,并定义一些基本的参数。

1import torch
2import torch.nn as nn
3import torch.optim as optim
4from torch.utils.data import Dataset, DataLoader
5from sklearn.model_selection import train_test_split
6from sklearn.preprocessing import StandardScaler
7import numpy as np
8
9# 定义超参数
10input_dim = 10  # 序列的维度
11seq_length = 50  # 序列长度
12hidden_dim = 128  # Transformer编码器隐藏层维度
13num_heads = 8  # 多头注意力机制中的头数
14num_layers = 6  # 编码器层数
15dropout = 0.1  # dropout概率
16num_classes = 3  # 分类类别数
17batch_size = 32
18num_epochs = 100
19learning_rate = 0.001
2. 数据预处理

假设我们有一组一维序列数据,我们将对其进行预处理,并将其划分为训练集和测试集。

1# 生成模拟数据
2def generate_data(n_samples, seq_length, input_dim, num_classes):
3    X = np.random.randn(n_samples, seq_length, input_dim)
4    y = np.random.randint(0, num_classes, size=(n_samples,))
5    return X, y
6
7# 生成数据
8X, y = generate_data(1000, seq_length, input_dim, num_classes)
9
10# 数据标准化
11scaler = StandardScaler()
12X = scaler.fit_transform(X.reshape(-1, input_dim)).reshape(X.shape)
13
14# 划分数据集
15X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
16
17# 定义数据集类
18class SequenceDataset(Dataset):
19    def __init__(self, X, y):
20        self.X = X
21        self.y = y
22
23    def __len__(self):
24        return len(self.y)
25
26    def __getitem__(self, idx):
27        return torch.tensor(self.X[idx], dtype=torch.float32), torch.tensor(self.y[idx], dtype=torch.long)
28
29train_dataset = SequenceDataset(X_train, y_train)
30test_dataset = SequenceDataset(X_test, y_test)
31
32train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
33test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
3. 定义Transformer模型

接下来定义一个基于Transformer的模型,该模型包含嵌入层、位置编码、多头自注意力机制和前馈神经网络等组件。

 
1class PositionalEncoding(nn.Module):
2    def __init__(self, d_model, max_len=5000):
3        super(PositionalEncoding, self).__init__()
4        pe = torch.zeros(max_len, d_model)
5        position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
6        div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-np.log(10000.0) / d_model))
7        pe[:, 0::2] = torch.sin(position * div_term)
8        pe[:, 1::2] = torch.cos(position * div_term)
9        pe = pe.unsqueeze(0).transpose(0, 1)
10        self.register_buffer('pe', pe)
11
12    def forward(self, x):
13        return x + self.pe[:x.size(0), :]
14
15class TransformerClassifier(nn.Module):
16    def __init__(self, input_dim, hidden_dim, num_heads, num_layers, num_classes, dropout):
17        super(TransformerClassifier, self).__init__()
18        self.embedding = nn.Linear(input_dim, hidden_dim)
19        self.positional_encoding = PositionalEncoding(hidden_dim)
20        encoder_layer = nn.TransformerEncoderLayer(d_model=hidden_dim, nhead=num_heads, dropout=dropout)
21        self.transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers)
22        self.classifier = nn.Linear(hidden_dim, num_classes)
23        self.dropout = nn.Dropout(dropout)
24
25    def forward(self, src):
26        embedded = self.embedding(src) * np.sqrt(hidden_dim)
27        encoded = self.positional_encoding(embedded)
28        output = self.transformer_encoder(encoded)
29        output = output.mean(dim=0)  # 平均池化
30        output = self.classifier(output)
31        return output
32
33model = TransformerClassifier(input_dim, hidden_dim, num_heads, num_layers, num_classes, dropout)
4. 训练模型

定义损失函数、优化器,并进行模型训练。

1criterion = nn.CrossEntropyLoss()
2optimizer = optim.Adam(model.parameters(), lr=learning_rate)
3
4def train(model, data_loader, criterion, optimizer, device):
5    model.train()
6    total_loss = 0.0
7    for batch_idx, (data, target) in enumerate(data_loader):
8        data, target = data.to(device), target.to(device)
9        optimizer.zero_grad()
10        output = model(data.permute(1, 0, 2))  # 调整数据维度为 (seq_len, batch_size, input_dim)
11        loss = criterion(output, target)
12        loss.backward()
13        optimizer.step()
14        total_loss += loss.item()
15    return total_loss / (batch_idx + 1)
16
17def evaluate(model, data_loader, criterion, device):
18    model.eval()
19    total_loss = 0.0
20    correct = 0
21    with torch.no_grad():
22        for data, target in data_loader:
23            data, target = data.to(device), target.to(device)
24            output = model(data.permute(1, 0, 2))
25            loss = criterion(output, target)
26            total_loss += loss.item()
27            pred = output.argmax(dim=1, keepdim=True)
28            correct += pred.eq(target.view_as(pred)).sum().item()
29    accuracy = correct / len(data_loader.dataset)
30    return total_loss / len(data_loader), accuracy
31
32device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
33model.to(device)
34
35for epoch in range(num_epochs):
36    train_loss = train(model, train_loader, criterion, optimizer, device)
37    test_loss, test_acc = evaluate(model, test_loader, criterion, device)
38    print(f"Epoch {epoch+1}/{num_epochs}, Train Loss: {train_loss:.4f}, Test Loss: {test_loss:.4f}, Test Acc: {test_acc:.4f}")
5. 总结

以上代码实现了一个使用Transformer对一维序列进行分类的完整流程,包括数据预处理、模型定义、训练和评估。该模型适用于处理时间序列数据或其他一维序列数据的分类任务。通过调整超参数和网络结构,可以进一步优化模型的性能。

这篇关于PyTorch中使用Transformer对一维序列进行分类的源代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1127965

相关文章

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

pdfmake生成pdf的使用

实际项目中有时会有根据填写的表单数据或者其他格式的数据,将数据自动填充到pdf文件中根据固定模板生成pdf文件的需求 文章目录 利用pdfmake生成pdf文件1.下载安装pdfmake第三方包2.封装生成pdf文件的共用配置3.生成pdf文件的文件模板内容4.调用方法生成pdf 利用pdfmake生成pdf文件 1.下载安装pdfmake第三方包 npm i pdfma

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]