PyTorch中使用Transformer对一维序列进行分类的源代码

2024-09-01 20:28

本文主要是介绍PyTorch中使用Transformer对一维序列进行分类的源代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 在PyTorch中使用Transformer对一维序列进行分类是一种常见做法,尤其是在处理时间序列数据、自然语言处理等领域。Transformer模型因其并行化处理能力和自注意力机制而成为许多任务的首选模型。

下面是一个使用PyTorch实现Transformer对一维序列进行分类的完整示例代码,包括数据预处理、模型定义、训练和评估等部分。

1. 准备工作

首先,我们需要导入所需的库,并定义一些基本的参数。

1import torch
2import torch.nn as nn
3import torch.optim as optim
4from torch.utils.data import Dataset, DataLoader
5from sklearn.model_selection import train_test_split
6from sklearn.preprocessing import StandardScaler
7import numpy as np
8
9# 定义超参数
10input_dim = 10  # 序列的维度
11seq_length = 50  # 序列长度
12hidden_dim = 128  # Transformer编码器隐藏层维度
13num_heads = 8  # 多头注意力机制中的头数
14num_layers = 6  # 编码器层数
15dropout = 0.1  # dropout概率
16num_classes = 3  # 分类类别数
17batch_size = 32
18num_epochs = 100
19learning_rate = 0.001
2. 数据预处理

假设我们有一组一维序列数据,我们将对其进行预处理,并将其划分为训练集和测试集。

1# 生成模拟数据
2def generate_data(n_samples, seq_length, input_dim, num_classes):
3    X = np.random.randn(n_samples, seq_length, input_dim)
4    y = np.random.randint(0, num_classes, size=(n_samples,))
5    return X, y
6
7# 生成数据
8X, y = generate_data(1000, seq_length, input_dim, num_classes)
9
10# 数据标准化
11scaler = StandardScaler()
12X = scaler.fit_transform(X.reshape(-1, input_dim)).reshape(X.shape)
13
14# 划分数据集
15X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
16
17# 定义数据集类
18class SequenceDataset(Dataset):
19    def __init__(self, X, y):
20        self.X = X
21        self.y = y
22
23    def __len__(self):
24        return len(self.y)
25
26    def __getitem__(self, idx):
27        return torch.tensor(self.X[idx], dtype=torch.float32), torch.tensor(self.y[idx], dtype=torch.long)
28
29train_dataset = SequenceDataset(X_train, y_train)
30test_dataset = SequenceDataset(X_test, y_test)
31
32train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
33test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
3. 定义Transformer模型

接下来定义一个基于Transformer的模型,该模型包含嵌入层、位置编码、多头自注意力机制和前馈神经网络等组件。

 
1class PositionalEncoding(nn.Module):
2    def __init__(self, d_model, max_len=5000):
3        super(PositionalEncoding, self).__init__()
4        pe = torch.zeros(max_len, d_model)
5        position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
6        div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-np.log(10000.0) / d_model))
7        pe[:, 0::2] = torch.sin(position * div_term)
8        pe[:, 1::2] = torch.cos(position * div_term)
9        pe = pe.unsqueeze(0).transpose(0, 1)
10        self.register_buffer('pe', pe)
11
12    def forward(self, x):
13        return x + self.pe[:x.size(0), :]
14
15class TransformerClassifier(nn.Module):
16    def __init__(self, input_dim, hidden_dim, num_heads, num_layers, num_classes, dropout):
17        super(TransformerClassifier, self).__init__()
18        self.embedding = nn.Linear(input_dim, hidden_dim)
19        self.positional_encoding = PositionalEncoding(hidden_dim)
20        encoder_layer = nn.TransformerEncoderLayer(d_model=hidden_dim, nhead=num_heads, dropout=dropout)
21        self.transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers)
22        self.classifier = nn.Linear(hidden_dim, num_classes)
23        self.dropout = nn.Dropout(dropout)
24
25    def forward(self, src):
26        embedded = self.embedding(src) * np.sqrt(hidden_dim)
27        encoded = self.positional_encoding(embedded)
28        output = self.transformer_encoder(encoded)
29        output = output.mean(dim=0)  # 平均池化
30        output = self.classifier(output)
31        return output
32
33model = TransformerClassifier(input_dim, hidden_dim, num_heads, num_layers, num_classes, dropout)
4. 训练模型

定义损失函数、优化器,并进行模型训练。

1criterion = nn.CrossEntropyLoss()
2optimizer = optim.Adam(model.parameters(), lr=learning_rate)
3
4def train(model, data_loader, criterion, optimizer, device):
5    model.train()
6    total_loss = 0.0
7    for batch_idx, (data, target) in enumerate(data_loader):
8        data, target = data.to(device), target.to(device)
9        optimizer.zero_grad()
10        output = model(data.permute(1, 0, 2))  # 调整数据维度为 (seq_len, batch_size, input_dim)
11        loss = criterion(output, target)
12        loss.backward()
13        optimizer.step()
14        total_loss += loss.item()
15    return total_loss / (batch_idx + 1)
16
17def evaluate(model, data_loader, criterion, device):
18    model.eval()
19    total_loss = 0.0
20    correct = 0
21    with torch.no_grad():
22        for data, target in data_loader:
23            data, target = data.to(device), target.to(device)
24            output = model(data.permute(1, 0, 2))
25            loss = criterion(output, target)
26            total_loss += loss.item()
27            pred = output.argmax(dim=1, keepdim=True)
28            correct += pred.eq(target.view_as(pred)).sum().item()
29    accuracy = correct / len(data_loader.dataset)
30    return total_loss / len(data_loader), accuracy
31
32device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
33model.to(device)
34
35for epoch in range(num_epochs):
36    train_loss = train(model, train_loader, criterion, optimizer, device)
37    test_loss, test_acc = evaluate(model, test_loader, criterion, device)
38    print(f"Epoch {epoch+1}/{num_epochs}, Train Loss: {train_loss:.4f}, Test Loss: {test_loss:.4f}, Test Acc: {test_acc:.4f}")
5. 总结

以上代码实现了一个使用Transformer对一维序列进行分类的完整流程,包括数据预处理、模型定义、训练和评估。该模型适用于处理时间序列数据或其他一维序列数据的分类任务。通过调整超参数和网络结构,可以进一步优化模型的性能。

这篇关于PyTorch中使用Transformer对一维序列进行分类的源代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1127965

相关文章

Spring Boot3虚拟线程的使用步骤详解

《SpringBoot3虚拟线程的使用步骤详解》虚拟线程是Java19中引入的一个新特性,旨在通过简化线程管理来提升应用程序的并发性能,:本文主要介绍SpringBoot3虚拟线程的使用步骤,... 目录问题根源分析解决方案验证验证实验实验1:未启用keep-alive实验2:启用keep-alive扩展建

使用Java实现通用树形结构构建工具类

《使用Java实现通用树形结构构建工具类》这篇文章主要为大家详细介绍了如何使用Java实现通用树形结构构建工具类,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录完整代码一、设计思想与核心功能二、核心实现原理1. 数据结构准备阶段2. 循环依赖检测算法3. 树形结构构建4. 搜索子

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

GORM中Model和Table的区别及使用

《GORM中Model和Table的区别及使用》Model和Table是两种与数据库表交互的核心方法,但它们的用途和行为存在著差异,本文主要介绍了GORM中Model和Table的区别及使用,具有一... 目录1. Model 的作用与特点1.1 核心用途1.2 行为特点1.3 示例China编程代码2. Tab

SpringBoot使用OkHttp完成高效网络请求详解

《SpringBoot使用OkHttp完成高效网络请求详解》OkHttp是一个高效的HTTP客户端,支持同步和异步请求,且具备自动处理cookie、缓存和连接池等高级功能,下面我们来看看SpringB... 目录一、OkHttp 简介二、在 Spring Boot 中集成 OkHttp三、封装 OkHttp

使用Python实现获取网页指定内容

《使用Python实现获取网页指定内容》在当今互联网时代,网页数据抓取是一项非常重要的技能,本文将带你从零开始学习如何使用Python获取网页中的指定内容,希望对大家有所帮助... 目录引言1. 网页抓取的基本概念2. python中的网页抓取库3. 安装必要的库4. 发送HTTP请求并获取网页内容5. 解

使用Python实现网络设备配置备份与恢复

《使用Python实现网络设备配置备份与恢复》网络设备配置备份与恢复在网络安全管理中起着至关重要的作用,本文为大家介绍了如何通过Python实现网络设备配置备份与恢复,需要的可以参考下... 目录一、网络设备配置备份与恢复的概念与重要性二、网络设备配置备份与恢复的分类三、python网络设备配置备份与恢复实

C#中的 StreamReader/StreamWriter 使用示例详解

《C#中的StreamReader/StreamWriter使用示例详解》在C#开发中,StreamReader和StreamWriter是处理文本文件的核心类,属于System.IO命名空间,本... 目录前言一、什么是 StreamReader 和 StreamWriter?1. 定义2. 特点3. 用

Python使用date模块进行日期处理的终极指南

《Python使用date模块进行日期处理的终极指南》在处理与时间相关的数据时,Python的date模块是开发者最趁手的工具之一,本文将用通俗的语言,结合真实案例,带您掌握date模块的六大核心功能... 目录引言一、date模块的核心功能1.1 日期表示1.2 日期计算1.3 日期比较二、六大常用方法详

Python使用DrissionPage中ChromiumPage进行自动化网页操作

《Python使用DrissionPage中ChromiumPage进行自动化网页操作》DrissionPage作为一款轻量级且功能强大的浏览器自动化库,为开发者提供了丰富的功能支持,本文将使用Dri... 目录前言一、ChromiumPage基础操作1.初始化Drission 和 ChromiumPage